Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Constitutive and Inflammation-Dependent Antimicrobial Peptides Produced by Epithelium Are Differentially Processed and Inactivated by the Commensal Finegoldia magna and the Pathogen Streptococcus pyogenes.

Frick, Inga-Maria LU ; Nordin, Sara L ; Baumgarten, Maria LU ; Mörgelin, Matthias LU ; Sørensen, Ole E LU ; Olin, Anders LU and Egesten, Arne LU (2011) In Journal of immunology 187. p.4300-4309
Abstract
Epithelial linings serve as physical barriers and produce antimicrobial peptides (AMPs) to maintain host integrity. Examples are the bactericidal proteins midkine (MK) and BRAK/CXCL14 that are constitutively produced in the skin epidermal layer, where the anaerobic Gram-positive coccoid commensal Finegoldia magna resides. Consequently, this bacterium is likely to encounter both MK and BRAK/CXCL14, making these molecules possible threats to its habitat. In this study, we show that MK expression is upregulated during inflammation, concomitant with a strong downregulation of BRAK/CXCL14, resulting in changed antibacterial conditions. MK, BRAK/CXCL14, and the inflammation-dependent antimicrobial β-defensins human β-defensin (hBD)-2 and hBD-3... (More)
Epithelial linings serve as physical barriers and produce antimicrobial peptides (AMPs) to maintain host integrity. Examples are the bactericidal proteins midkine (MK) and BRAK/CXCL14 that are constitutively produced in the skin epidermal layer, where the anaerobic Gram-positive coccoid commensal Finegoldia magna resides. Consequently, this bacterium is likely to encounter both MK and BRAK/CXCL14, making these molecules possible threats to its habitat. In this study, we show that MK expression is upregulated during inflammation, concomitant with a strong downregulation of BRAK/CXCL14, resulting in changed antibacterial conditions. MK, BRAK/CXCL14, and the inflammation-dependent antimicrobial β-defensins human β-defensin (hBD)-2 and hBD-3 all showed bactericidal activity against both F. magna and the virulent pathogen Streptococcus pyogenes at similar concentrations. SufA, a released protease of F. magna, degraded MK and BRAK/CXCL14 but not hBD-2 nor hBD-3. Cleavage was seen at lysine and arginine residues, amino acids characteristic of AMPs. Intermediate SufA-degraded fragments of MK and BRAK/CXCL14 showed stronger bactericidal activity against S. pyogenes than F. magna, thus promoting survival of the latter. In contrast, the cysteine-protease SpeB of S. pyogenes rapidly degraded all AMPs investigated. The proteins FAF and SIC, released by F. magna and S. pyogenes, respectively, neutralized the antibacterial activity of MK and BRAK/CXCL14, protein FAF being the most efficient. Quantitation and colocalization by immunoelectron microscopy demonstrated significant levels and interactions of the molecules in in vivo and ex vivo samples. The findings reflect strategies used by a permanently residing commensal and a virulent pathogen, the latter operating during the limited time course of invasive disease. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of immunology
volume
187
pages
4300 - 4309
publisher
American Association of Immunologists
external identifiers
  • wos:000295623100042
  • pmid:21918193
  • scopus:80054725632
  • pmid:21918193
ISSN
1550-6606
DOI
10.4049/jimmunol.1004179
language
English
LU publication?
yes
id
730e18a3-5f42-420e-a7c9-77e45551af44 (old id 2168885)
alternative location
http://www.ncbi.nlm.nih.gov/pubmed/21918193?dopt=Abstract
date added to LUP
2016-04-04 09:33:09
date last changed
2022-01-29 18:21:50
@article{730e18a3-5f42-420e-a7c9-77e45551af44,
  abstract     = {{Epithelial linings serve as physical barriers and produce antimicrobial peptides (AMPs) to maintain host integrity. Examples are the bactericidal proteins midkine (MK) and BRAK/CXCL14 that are constitutively produced in the skin epidermal layer, where the anaerobic Gram-positive coccoid commensal Finegoldia magna resides. Consequently, this bacterium is likely to encounter both MK and BRAK/CXCL14, making these molecules possible threats to its habitat. In this study, we show that MK expression is upregulated during inflammation, concomitant with a strong downregulation of BRAK/CXCL14, resulting in changed antibacterial conditions. MK, BRAK/CXCL14, and the inflammation-dependent antimicrobial β-defensins human β-defensin (hBD)-2 and hBD-3 all showed bactericidal activity against both F. magna and the virulent pathogen Streptococcus pyogenes at similar concentrations. SufA, a released protease of F. magna, degraded MK and BRAK/CXCL14 but not hBD-2 nor hBD-3. Cleavage was seen at lysine and arginine residues, amino acids characteristic of AMPs. Intermediate SufA-degraded fragments of MK and BRAK/CXCL14 showed stronger bactericidal activity against S. pyogenes than F. magna, thus promoting survival of the latter. In contrast, the cysteine-protease SpeB of S. pyogenes rapidly degraded all AMPs investigated. The proteins FAF and SIC, released by F. magna and S. pyogenes, respectively, neutralized the antibacterial activity of MK and BRAK/CXCL14, protein FAF being the most efficient. Quantitation and colocalization by immunoelectron microscopy demonstrated significant levels and interactions of the molecules in in vivo and ex vivo samples. The findings reflect strategies used by a permanently residing commensal and a virulent pathogen, the latter operating during the limited time course of invasive disease.}},
  author       = {{Frick, Inga-Maria and Nordin, Sara L and Baumgarten, Maria and Mörgelin, Matthias and Sørensen, Ole E and Olin, Anders and Egesten, Arne}},
  issn         = {{1550-6606}},
  language     = {{eng}},
  pages        = {{4300--4309}},
  publisher    = {{American Association of Immunologists}},
  series       = {{Journal of immunology}},
  title        = {{Constitutive and Inflammation-Dependent Antimicrobial Peptides Produced by Epithelium Are Differentially Processed and Inactivated by the Commensal Finegoldia magna and the Pathogen Streptococcus pyogenes.}},
  url          = {{http://dx.doi.org/10.4049/jimmunol.1004179}},
  doi          = {{10.4049/jimmunol.1004179}},
  volume       = {{187}},
  year         = {{2011}},
}