Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Cuneate spiking neural network learning to classify naturalistic texture stimuli under varying sensing conditions

Rongala, Udaya B. LU ; Mazzoni, Alberto ; Spanne, Anton LU ; Jörntell, Henrik LU and Oddo, Calogero M. (2020) In Neural Networks 123. p.273-287
Abstract

We implemented a functional neuronal network that was able to learn and discriminate haptic features from biomimetic tactile sensor inputs using a two-layer spiking neuron model and homeostatic synaptic learning mechanism. The first order neuron model was used to emulate biological tactile afferents and the second order neuron model was used to emulate biological cuneate neurons. We have evaluated 10 naturalistic textures using a passive touch protocol, under varying sensing conditions. Tactile sensor data acquired with five textures under five sensing conditions were used for a synaptic learning process, to tune the synaptic weights between tactile afferents and cuneate neurons. Using post-learning synaptic weights, we evaluated the... (More)

We implemented a functional neuronal network that was able to learn and discriminate haptic features from biomimetic tactile sensor inputs using a two-layer spiking neuron model and homeostatic synaptic learning mechanism. The first order neuron model was used to emulate biological tactile afferents and the second order neuron model was used to emulate biological cuneate neurons. We have evaluated 10 naturalistic textures using a passive touch protocol, under varying sensing conditions. Tactile sensor data acquired with five textures under five sensing conditions were used for a synaptic learning process, to tune the synaptic weights between tactile afferents and cuneate neurons. Using post-learning synaptic weights, we evaluated the individual and population cuneate neuron responses by decoding across 10 stimuli, under varying sensing conditions. This resulted in a high decoding performance. We further validated the decoding performance across stimuli, irrespective of sensing velocities using a set of 25 cuneate neuron responses. This resulted in a median decoding performance of 96% across the set of cuneate neurons. Being able to learn and perform generalized discrimination across tactile stimuli, makes this functional spiking tactile system effective and suitable for further robotic applications.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Cuneate neurons, Neurorobotics, Primary afferents, Spiking neural network, Synaptic weight learning, Tactile sensing
in
Neural Networks
volume
123
pages
15 pages
publisher
Elsevier
external identifiers
  • scopus:85077121795
  • pmid:31887687
ISSN
0893-6080
DOI
10.1016/j.neunet.2019.11.020
language
English
LU publication?
yes
id
2b3a9986-daed-44ad-abbf-85462b975d43
date added to LUP
2020-01-10 09:55:01
date last changed
2024-06-26 08:18:32
@article{2b3a9986-daed-44ad-abbf-85462b975d43,
  abstract     = {{<p>We implemented a functional neuronal network that was able to learn and discriminate haptic features from biomimetic tactile sensor inputs using a two-layer spiking neuron model and homeostatic synaptic learning mechanism. The first order neuron model was used to emulate biological tactile afferents and the second order neuron model was used to emulate biological cuneate neurons. We have evaluated 10 naturalistic textures using a passive touch protocol, under varying sensing conditions. Tactile sensor data acquired with five textures under five sensing conditions were used for a synaptic learning process, to tune the synaptic weights between tactile afferents and cuneate neurons. Using post-learning synaptic weights, we evaluated the individual and population cuneate neuron responses by decoding across 10 stimuli, under varying sensing conditions. This resulted in a high decoding performance. We further validated the decoding performance across stimuli, irrespective of sensing velocities using a set of 25 cuneate neuron responses. This resulted in a median decoding performance of 96% across the set of cuneate neurons. Being able to learn and perform generalized discrimination across tactile stimuli, makes this functional spiking tactile system effective and suitable for further robotic applications.</p>}},
  author       = {{Rongala, Udaya B. and Mazzoni, Alberto and Spanne, Anton and Jörntell, Henrik and Oddo, Calogero M.}},
  issn         = {{0893-6080}},
  keywords     = {{Cuneate neurons; Neurorobotics; Primary afferents; Spiking neural network; Synaptic weight learning; Tactile sensing}},
  language     = {{eng}},
  pages        = {{273--287}},
  publisher    = {{Elsevier}},
  series       = {{Neural Networks}},
  title        = {{Cuneate spiking neural network learning to classify naturalistic texture stimuli under varying sensing conditions}},
  url          = {{http://dx.doi.org/10.1016/j.neunet.2019.11.020}},
  doi          = {{10.1016/j.neunet.2019.11.020}},
  volume       = {{123}},
  year         = {{2020}},
}