Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Block selective grafting of poly(vinylphosphonic acid) from aromatic multiblock copolymers for nanostructured electrolyte membranes

Sannigrahi, Arindam LU ; Takamuku, Shogo LU and Jannasch, Patric LU orcid (2013) In Polymer Chemistry 4(15). p.4207-4218
Abstract
Alternating aromatic multiblock copolymers have been structurally designed to enable selective lithiation and subsequent anionic graft polymerization from only one of the two block types. The multiblock copolymers were prepared by coupling polyfluoroether (PFE) and polysulfone (PSU) precursor blocks under mild conditions. The judicious combination of blocks allowed for block selective lithiation of the PSU blocks to obtain a macroinitiator for anionic polymerization of diethyl vinylphosphonate. The block selective grafting was confirmed by 1H and 19F NMR spectroscopy. After hydrolysis to obtain poly(vinylphosphonic acid) (PVPA) side chains, mechanically stable transparent electrolyte membranes were cast from 1-methyl-2-pyrrolidinone... (More)
Alternating aromatic multiblock copolymers have been structurally designed to enable selective lithiation and subsequent anionic graft polymerization from only one of the two block types. The multiblock copolymers were prepared by coupling polyfluoroether (PFE) and polysulfone (PSU) precursor blocks under mild conditions. The judicious combination of blocks allowed for block selective lithiation of the PSU blocks to obtain a macroinitiator for anionic polymerization of diethyl vinylphosphonate. The block selective grafting was confirmed by 1H and 19F NMR spectroscopy. After hydrolysis to obtain poly(vinylphosphonic acid) (PVPA) side chains, mechanically stable transparent electrolyte membranes were cast from 1-methyl-2-pyrrolidinone solutions. Analysis by atom force microscopy showed that the copolymers self-assembled to form nanostructured membranes with continuous proton conducting PVPA phase domains. Calorimetry showed separate glass transition temperatures from the PFE and PVPA phases, with the latter increasing with increasing annealing temperatures as a result of anhydride formation. Fully hydrated multiblock copolymer membranes reached proton conductivities above 80 mS cm-1 at 120 °C. The approach of block selective lithiation and modification of aromatic block copolymers can be used as a general strategy to prepare durable and functional nanostructured polymer membranes and materials. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Block copolymers, Polyelectrolytes, Ionomers, Microphase separation, Water uptake, Proton conductivity, Fuel cell membranes
in
Polymer Chemistry
volume
4
issue
15
pages
4207 - 4218
publisher
Royal Society of Chemistry
external identifiers
  • wos:000321858300016
  • scopus:84880020519
ISSN
1759-9954
DOI
10.1039/C3PY00513E
language
English
LU publication?
yes
additional info
The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2010–2013) under the call ENERGY-2010-10.2-1: Future Emerging Technologies for Energy Applications (FET) under contract 256821 QuasiDry. Accepted 28 May 2013.
id
d1703afa-80b6-422c-91c9-7c56713ce128 (old id 3734593)
date added to LUP
2016-04-01 10:08:06
date last changed
2022-03-19 17:39:34
@article{d1703afa-80b6-422c-91c9-7c56713ce128,
  abstract     = {{Alternating aromatic multiblock copolymers have been structurally designed to enable selective lithiation and subsequent anionic graft polymerization from only one of the two block types. The multiblock copolymers were prepared by coupling polyfluoroether (PFE) and polysulfone (PSU) precursor blocks under mild conditions. The judicious combination of blocks allowed for block selective lithiation of the PSU blocks to obtain a macroinitiator for anionic polymerization of diethyl vinylphosphonate. The block selective grafting was confirmed by 1H and 19F NMR spectroscopy. After hydrolysis to obtain poly(vinylphosphonic acid) (PVPA) side chains, mechanically stable transparent electrolyte membranes were cast from 1-methyl-2-pyrrolidinone solutions. Analysis by atom force microscopy showed that the copolymers self-assembled to form nanostructured membranes with continuous proton conducting PVPA phase domains. Calorimetry showed separate glass transition temperatures from the PFE and PVPA phases, with the latter increasing with increasing annealing temperatures as a result of anhydride formation. Fully hydrated multiblock copolymer membranes reached proton conductivities above 80 mS cm-1 at 120 °C. The approach of block selective lithiation and modification of aromatic block copolymers can be used as a general strategy to prepare durable and functional nanostructured polymer membranes and materials.}},
  author       = {{Sannigrahi, Arindam and Takamuku, Shogo and Jannasch, Patric}},
  issn         = {{1759-9954}},
  keywords     = {{Block copolymers; Polyelectrolytes; Ionomers; Microphase separation; Water uptake; Proton conductivity; Fuel cell membranes}},
  language     = {{eng}},
  number       = {{15}},
  pages        = {{4207--4218}},
  publisher    = {{Royal Society of Chemistry}},
  series       = {{Polymer Chemistry}},
  title        = {{Block selective grafting of poly(vinylphosphonic acid) from aromatic multiblock copolymers for nanostructured electrolyte membranes}},
  url          = {{http://dx.doi.org/10.1039/C3PY00513E}},
  doi          = {{10.1039/C3PY00513E}},
  volume       = {{4}},
  year         = {{2013}},
}