Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

The inner flow geometry in MAXI J1820+070 during hard and hard-intermediate states

De Marco, B. ; Zdziarski, A. A. ; Ponti, G. ; Migliori, G. ; Belloni, T. M. ; Segovia Otero, A. LU ; Dziełak, M. A. and Lai, E. V. (2021) In Astronomy and Astrophysics 654.
Abstract

Context. We present a systematic X-ray spectral-timing study of the recently discovered, exceptionally bright black hole X-ray binary system MAXI J1820+070. Our analysis focuses on the first part of the 2018 outburst, covering the rise throughout the hard state, the bright hard and hard-intermediate states, and the transition to the soft-intermediate state. Aims. We address the issue of constraining the geometry of the innermost accretion flow and its evolution throughout an outburst. Methods. We employed two independent X-ray spectral-timing methods applied to archival NICER data of MAXI J1820+070. We first identified and tracked the evolution of a characteristic frequency of soft X-ray thermal reverberation lags (lags of the thermally... (More)

Context. We present a systematic X-ray spectral-timing study of the recently discovered, exceptionally bright black hole X-ray binary system MAXI J1820+070. Our analysis focuses on the first part of the 2018 outburst, covering the rise throughout the hard state, the bright hard and hard-intermediate states, and the transition to the soft-intermediate state. Aims. We address the issue of constraining the geometry of the innermost accretion flow and its evolution throughout an outburst. Methods. We employed two independent X-ray spectral-timing methods applied to archival NICER data of MAXI J1820+070. We first identified and tracked the evolution of a characteristic frequency of soft X-ray thermal reverberation lags (lags of the thermally reprocessed disc emission after the irradiation of variable hard X-ray photons). This frequency is sensitive to intrinsic changes in the relative distance between the X-ray source and the disc. Then, we studied the spectral evolution of the quasi-thermal component responsible for the observed thermal reverberation lags. We did so by analysing high-frequency covariance spectra, which single out spectral components that vary in a linearly correlated way on the shortest sampled timescales and are thus produced in the innermost regions of the accretion flow. Results. The frequency of thermal reverberation lags steadily increases throughout most of the outburst, implying that the relative distance between the X-ray source and the disc decreases as the source softens. However, near transition this evolution breaks, showing a sudden increase (decrease) in lag amplitude (frequency). On the other hand, the temperature of the quasi-thermal component in covariance spectra, due to disc irradiation and responsible for the observed soft reverberation lags, consistently increases throughout all the analysed observations. Conclusions. This study proposes an alternative interpretation to the recently proposed contracting corona scenario. Assuming a constant height for the X-ray source, the steady increase in the reverberation lag frequency and in the irradiated disc temperature in high-frequency covariance spectra can be explained in terms of a decrease in the disc inner radius as the source softens. The behaviour of thermal reverberation lags near transition might be related to the relativistic plasma ejections detected at radio wavelengths, suggesting a causal connection between the two phenomena. Throughout most of the hard and hard-intermediate state, the disc is consistent with being truncated (with an inner radius Rin 10 Rg), reaching close to the innermost stable circular orbit only near transition.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Accretion, accretion disks, X-rays: binaries, X-rays: individuals: MAXI J1820+070
in
Astronomy and Astrophysics
volume
654
article number
A14
publisher
EDP Sciences
external identifiers
  • scopus:85116492648
ISSN
0004-6361
DOI
10.1051/0004-6361/202140567
language
English
LU publication?
yes
additional info
Publisher Copyright: © ESO 2021.
id
3ad34064-48f0-464f-8438-7e5cb166f78b
date added to LUP
2021-10-20 16:05:21
date last changed
2024-04-20 14:34:25
@article{3ad34064-48f0-464f-8438-7e5cb166f78b,
  abstract     = {{<p>Context. We present a systematic X-ray spectral-timing study of the recently discovered, exceptionally bright black hole X-ray binary system MAXI J1820+070. Our analysis focuses on the first part of the 2018 outburst, covering the rise throughout the hard state, the bright hard and hard-intermediate states, and the transition to the soft-intermediate state. Aims. We address the issue of constraining the geometry of the innermost accretion flow and its evolution throughout an outburst. Methods. We employed two independent X-ray spectral-timing methods applied to archival NICER data of MAXI J1820+070. We first identified and tracked the evolution of a characteristic frequency of soft X-ray thermal reverberation lags (lags of the thermally reprocessed disc emission after the irradiation of variable hard X-ray photons). This frequency is sensitive to intrinsic changes in the relative distance between the X-ray source and the disc. Then, we studied the spectral evolution of the quasi-thermal component responsible for the observed thermal reverberation lags. We did so by analysing high-frequency covariance spectra, which single out spectral components that vary in a linearly correlated way on the shortest sampled timescales and are thus produced in the innermost regions of the accretion flow. Results. The frequency of thermal reverberation lags steadily increases throughout most of the outburst, implying that the relative distance between the X-ray source and the disc decreases as the source softens. However, near transition this evolution breaks, showing a sudden increase (decrease) in lag amplitude (frequency). On the other hand, the temperature of the quasi-thermal component in covariance spectra, due to disc irradiation and responsible for the observed soft reverberation lags, consistently increases throughout all the analysed observations. Conclusions. This study proposes an alternative interpretation to the recently proposed contracting corona scenario. Assuming a constant height for the X-ray source, the steady increase in the reverberation lag frequency and in the irradiated disc temperature in high-frequency covariance spectra can be explained in terms of a decrease in the disc inner radius as the source softens. The behaviour of thermal reverberation lags near transition might be related to the relativistic plasma ejections detected at radio wavelengths, suggesting a causal connection between the two phenomena. Throughout most of the hard and hard-intermediate state, the disc is consistent with being truncated (with an inner radius Rin 10 Rg), reaching close to the innermost stable circular orbit only near transition. </p>}},
  author       = {{De Marco, B. and Zdziarski, A. A. and Ponti, G. and Migliori, G. and Belloni, T. M. and Segovia Otero, A. and Dziełak, M. A. and Lai, E. V.}},
  issn         = {{0004-6361}},
  keywords     = {{Accretion, accretion disks; X-rays: binaries; X-rays: individuals: MAXI J1820+070}},
  language     = {{eng}},
  month        = {{10}},
  publisher    = {{EDP Sciences}},
  series       = {{Astronomy and Astrophysics}},
  title        = {{The inner flow geometry in MAXI J1820+070 during hard and hard-intermediate states}},
  url          = {{http://dx.doi.org/10.1051/0004-6361/202140567}},
  doi          = {{10.1051/0004-6361/202140567}},
  volume       = {{654}},
  year         = {{2021}},
}