Protein stabilization. Some methods and mechanisms
(1999)- Abstract
- The effect of different additives on protein stability was studied, and the basis for stabilization was investigated at molecular level. The addition of sorbitol enhanced thermal stability of hen egg white lysozyme in aqueous solution. NMR spectroscopy revealed changes in the relaxation properties of Ala and Thr methyl groups in lysozyme, indicating compression of the enzyme as a consequence of preferential exclusion of the polyol from the enzyme surface together with enhanced water structure. Displacement of water from the enzyme surface was also observed, indicating presence of close contacts between sorbitol and lysozyme besides exclusion. The polycation, poly(ethyleneimine) (PEI), increased the shelf life of number of proteins at... (More)
- The effect of different additives on protein stability was studied, and the basis for stabilization was investigated at molecular level. The addition of sorbitol enhanced thermal stability of hen egg white lysozyme in aqueous solution. NMR spectroscopy revealed changes in the relaxation properties of Ala and Thr methyl groups in lysozyme, indicating compression of the enzyme as a consequence of preferential exclusion of the polyol from the enzyme surface together with enhanced water structure. Displacement of water from the enzyme surface was also observed, indicating presence of close contacts between sorbitol and lysozyme besides exclusion. The polycation, poly(ethyleneimine) (PEI), increased the shelf life of number of proteins at temperatures above ambient. Porcine muscle lactate dehydrogenase (LDH) retained its activity completely for one month in the presence of PEI at pH 7.2 while in its absence, more than 50% of the activity was lost already after two weeks. Circular dichroism confirmed substantial preservation of secondary structure during the period of storage, however, PEI did not have any effect on the denaturation temperature of LDH. Sorbitol, on the other hand improved the thermodynamic stability of LDH but not the storage stability. Freeze-drying LDH in the presence of PEI also resulted in significantly improved storage stability of the dried preparation. The interactions between PEI and LDH were studied using dynamic light scattering and intrinsic tryptophan fluorescence. Aggregation of LDH was seen to decrease substantially with the polymer present in solution. Formation of a complex between PEI of different molecular weights and LDH was observed, the interactions being rather weak. The stabilizing effect of sorbitol and PEI and also several other additives against protein oxidation was investigated using LDH as a model. Oxidation of the enzyme was performed using CuSO4 and H2O2, either individually or together. PEI was shown to be the best stabilizing agent, followed by EDTA, against both metal ion and hydrogen peroxide mediated oxidation. The protective effect of PEI is attributed to its chelating properties and the close contacts between the polymer and enzyme. The combination of PEI and sorbitol was shown to protect against both oxidation and thermal denaturation. Immobilization of trypsin to a thermo-responsive reversibly soluble-insoluble polymer, poly-N-isopropylacrylamide, was performed and stability of the enzyme conjugate was studied. The immobilization increased the resistance of trypsin towards autolysis. Stability of the enzyme towards heat and organic solvents was improved. The enzyme conjugate could be recycled several times without activity loss. (Less)
- Abstract (Swedish)
- Popular Abstract in Swedish
Proteiner är biologiska molekyler som kan utvinnas ur olika bakterier, svampar, djur och människor. I sin naturliga miljö bidrar de bl. a. till att katalysera (snabba på) olika kemiska reaktioner (enzymer), att sköta transporten av olika molekyler, bidra till immunförsvaret och tillväxtkontroll (hormoner). Upptäckten att proteiners olika funktion kan uttnyttjas i många olika sammanhang utanför deras naturliga miljö har genom åren lett till tillväxt av biotekniska industrier för produktion av protein-molekyler. Tillämpningar av de framställda och upprenade proteinerna finns inom läkemedelsindustrin, med välkända exempel som insulin eller tillväxthormon och inom diagnostik. Inom... (More) - Popular Abstract in Swedish
Proteiner är biologiska molekyler som kan utvinnas ur olika bakterier, svampar, djur och människor. I sin naturliga miljö bidrar de bl. a. till att katalysera (snabba på) olika kemiska reaktioner (enzymer), att sköta transporten av olika molekyler, bidra till immunförsvaret och tillväxtkontroll (hormoner). Upptäckten att proteiners olika funktion kan uttnyttjas i många olika sammanhang utanför deras naturliga miljö har genom åren lett till tillväxt av biotekniska industrier för produktion av protein-molekyler. Tillämpningar av de framställda och upprenade proteinerna finns inom läkemedelsindustrin, med välkända exempel som insulin eller tillväxthormon och inom diagnostik. Inom tvättmedelsindustrin används stora mängder av olika sorters proteiner som bryter ned andra proteiner (proteaser) och fett (lipaser). Proteiner kan även användas i olika tekniska processer, t.ex. blekning av pappersmassa. Ett protein består av en lång kedja av aminosyror som, för att proteinet skall vara aktivt och funktionellt, är ihopveckad i en specifik konstruktion. Denna konstruktion bärs upp av en mängd olika sorters bindningar som är mycket känsliga för påverkan utifrån. Proteinets naturliga miljö erbjuder ett bra skydd mot nedbrytning, med bl.a. lagom temperatur och rätt surhetsgrad (pH), men när ett protein produceras och sedan renas upp ökar risken för att de bindningar som håller ihop den ihopveckade proteinkedjan skall brytas och konstruktionen falla samman. När den ihopveckade kedjan vecklar ut sig (denatureras) blir konstruktionen ännu mer känslig än tidigare för olika nedbrytningsmekanismer, och i vissa fall leder det till att kedjan inte kan veckla ihop sig igen till sin rätta konstruktion. När detta händer har proteinet med all sannolikhet förlorat sin funktion och blir värdelöst för tillverkaren eller användaren. Därför har det på senare år blivit allt viktigare att hitta sätt att behålla proteiners aktiva konstruktion under produktion, förvaring och användning. Denna avhandling behandlar till stor del de olika processer som kan leda till inaktivering av ett protein och tar upp kända metoder för stabilisering av proteiner. Målet med mitt arbete har till största delen varit att undersöka hur olika tillsatsämnen kan förhindra denaturering och inaktivering av proteiner samt att få en ökad förståelse för den bakomliggande orsaken till att dessa ämnen stabiliserar ett protein. Den stabiliserande inverkan av att koppla fast proteiner på en vattenlöslig polymer har också undersökts. I ett fall undersöktes den bakomliggande orsaken till att sorbitol, en sockerliknande molekyl, förhindrar denaturering av proteiner. I en annan studie undersöktes effekten av en polymer, polyetylenimin, på stabiliteten hos ett protein, laktatdehydrogenas. När det var fastställt att polymeren hade en bra stabiliseringsförmåga gjordes vidare olika undersökningar för att fastställa vilka effekter polymeren kan tänkas ha på proteinkonstruktionen för att ge den dess ökade stabilitet. För att studera dessa effekter och eventuella interaktioner mellan stabiliseringsämne och protein har olika analysmetoder använts. Dessa kan på ett säkert sätt detektera skillnader mellan proteinets ihopveckade och denaturerade struktur och ge information om interaktioner mellan molekylerna. De uppnådda resultaten kommer förhoppningsvis att bidra till den ökade förståelsen för vilka mekanismer som ligger till grund för vissa tillsatsämnens stabiliseringsförmåga. Denna kunskap kan sedan ligga till grund för design av nya och ännu mer effektiva stabiliseringssystem, eventuellt med kombinationer av stabiliserande ämnen för att uppnå önskad effekt. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/40124
- author
- Andersson, Maria LU
- supervisor
- opponent
-
- Prof Cabral, Joaquim S., Instituto Superior Tecnico, Lisboa, Portugal
- organization
- publishing date
- 1999
- type
- Thesis
- publication status
- published
- subject
- keywords
- sorbitol, protein stability, preferential exclusion, polyol, poly-NIPAAm, polymer, poly(ethyleneimine), polyelectrolyte, oxidation, NMR spectroscopy, lysozyme, lactate dehydrogenase, fluorescence, dynamic light scattering, complex, additive, circular dichroism, stabilization, trypsin, thermo-reversible polymer., Biotechnology, Bioteknik
- pages
- 137 pages
- publisher
- Department of Biotechnology, Lund University
- defense location
- Room C, Chemical Center, Sölvegatan 39, Lund
- defense date
- 1999-12-03 10:15:00
- external identifiers
-
- other:ISRN LUTKDH/TKBT--99/1043--SE
- ISBN
- 91-628-3938-1
- language
- English
- LU publication?
- yes
- id
- 8866ab68-1371-4c50-b34e-60712cb4b986 (old id 40124)
- date added to LUP
- 2016-04-04 12:23:06
- date last changed
- 2018-11-21 21:10:39
@phdthesis{8866ab68-1371-4c50-b34e-60712cb4b986, abstract = {{The effect of different additives on protein stability was studied, and the basis for stabilization was investigated at molecular level. The addition of sorbitol enhanced thermal stability of hen egg white lysozyme in aqueous solution. NMR spectroscopy revealed changes in the relaxation properties of Ala and Thr methyl groups in lysozyme, indicating compression of the enzyme as a consequence of preferential exclusion of the polyol from the enzyme surface together with enhanced water structure. Displacement of water from the enzyme surface was also observed, indicating presence of close contacts between sorbitol and lysozyme besides exclusion. The polycation, poly(ethyleneimine) (PEI), increased the shelf life of number of proteins at temperatures above ambient. Porcine muscle lactate dehydrogenase (LDH) retained its activity completely for one month in the presence of PEI at pH 7.2 while in its absence, more than 50% of the activity was lost already after two weeks. Circular dichroism confirmed substantial preservation of secondary structure during the period of storage, however, PEI did not have any effect on the denaturation temperature of LDH. Sorbitol, on the other hand improved the thermodynamic stability of LDH but not the storage stability. Freeze-drying LDH in the presence of PEI also resulted in significantly improved storage stability of the dried preparation. The interactions between PEI and LDH were studied using dynamic light scattering and intrinsic tryptophan fluorescence. Aggregation of LDH was seen to decrease substantially with the polymer present in solution. Formation of a complex between PEI of different molecular weights and LDH was observed, the interactions being rather weak. The stabilizing effect of sorbitol and PEI and also several other additives against protein oxidation was investigated using LDH as a model. Oxidation of the enzyme was performed using CuSO4 and H2O2, either individually or together. PEI was shown to be the best stabilizing agent, followed by EDTA, against both metal ion and hydrogen peroxide mediated oxidation. The protective effect of PEI is attributed to its chelating properties and the close contacts between the polymer and enzyme. The combination of PEI and sorbitol was shown to protect against both oxidation and thermal denaturation. Immobilization of trypsin to a thermo-responsive reversibly soluble-insoluble polymer, poly-N-isopropylacrylamide, was performed and stability of the enzyme conjugate was studied. The immobilization increased the resistance of trypsin towards autolysis. Stability of the enzyme towards heat and organic solvents was improved. The enzyme conjugate could be recycled several times without activity loss.}}, author = {{Andersson, Maria}}, isbn = {{91-628-3938-1}}, keywords = {{sorbitol; protein stability; preferential exclusion; polyol; poly-NIPAAm; polymer; poly(ethyleneimine); polyelectrolyte; oxidation; NMR spectroscopy; lysozyme; lactate dehydrogenase; fluorescence; dynamic light scattering; complex; additive; circular dichroism; stabilization; trypsin; thermo-reversible polymer.; Biotechnology; Bioteknik}}, language = {{eng}}, publisher = {{Department of Biotechnology, Lund University}}, school = {{Lund University}}, title = {{Protein stabilization. Some methods and mechanisms}}, year = {{1999}}, }