Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Orchestrated Regulation of Nogo Receptors, Lotus, AMPA Receptors and BDNF in an ECT Model Suggests Opening and Closure of a Window of Synaptic Plasticity

Nordgren, Max ; Karlsson, Tobias ; Svensson, Maria LU ; Koczy, Josefin ; Josephson, Anna ; Olson, Lars ; Tingström, Anders LU and Brene, Stefan (2013) In PLoS ONE 8(11).
Abstract
Electroconvulsive therapy (ECT) is an efficient and relatively fast acting treatment for depression. However, one severe side effect of the treatment is retrograde amnesia, which in certain cases can be long-term. The mechanisms behind the antidepressant effect and the amnesia are not well understood. We hypothesized that ECT causes transient downregulation of key molecules needed to stabilize synaptic structure and to prevent Ca2+ influx, and a simultaneous increase in neurotrophic factors, thus providing a short time window of increased structural synaptic plasticity. Here we followed regulation of NgR1, NgR3, LOTUS, BDNF, and AMPA subunits GluR1 and GluR2 flip and flop mRNA levels in hippocampus at 2, 4, 12, 24, and 72 hours after a... (More)
Electroconvulsive therapy (ECT) is an efficient and relatively fast acting treatment for depression. However, one severe side effect of the treatment is retrograde amnesia, which in certain cases can be long-term. The mechanisms behind the antidepressant effect and the amnesia are not well understood. We hypothesized that ECT causes transient downregulation of key molecules needed to stabilize synaptic structure and to prevent Ca2+ influx, and a simultaneous increase in neurotrophic factors, thus providing a short time window of increased structural synaptic plasticity. Here we followed regulation of NgR1, NgR3, LOTUS, BDNF, and AMPA subunits GluR1 and GluR2 flip and flop mRNA levels in hippocampus at 2, 4, 12, 24, and 72 hours after a single episode of induced electroconvulsive seizures (ECS) in rats. NgR1 and LOTUS mRNA levels were transiently downregulated in the dentate gyrus 2, 4, 12 and 4, 12, 24 h after ECS treatment, respectively. GluR2 flip, flop and GluR1 flop were downregulated at 4 h. GluR2 flip remained downregulated at 12 h. In contrast, BDNF, NgR3 and GluR1 flip mRNA levels were upregulated. Thus, ECS treatment induces a transient regulation of factors important for neuronal plasticity. Our data provide correlations between ECS treatment and molecular events compatible with the hypothesis that both effects and side effects of ECT may be caused by structural synaptic rearrangements. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
PLoS ONE
volume
8
issue
11
article number
e78778
publisher
Public Library of Science (PLoS)
external identifiers
  • wos:000327143800016
  • scopus:84893676439
  • pmid:24244357
ISSN
1932-6203
DOI
10.1371/journal.pone.0078778
language
English
LU publication?
yes
id
59c9d7e8-11ea-4241-b955-8f59ab466be1 (old id 4196688)
date added to LUP
2016-04-01 13:00:21
date last changed
2022-03-21 08:00:29
@article{59c9d7e8-11ea-4241-b955-8f59ab466be1,
  abstract     = {{Electroconvulsive therapy (ECT) is an efficient and relatively fast acting treatment for depression. However, one severe side effect of the treatment is retrograde amnesia, which in certain cases can be long-term. The mechanisms behind the antidepressant effect and the amnesia are not well understood. We hypothesized that ECT causes transient downregulation of key molecules needed to stabilize synaptic structure and to prevent Ca2+ influx, and a simultaneous increase in neurotrophic factors, thus providing a short time window of increased structural synaptic plasticity. Here we followed regulation of NgR1, NgR3, LOTUS, BDNF, and AMPA subunits GluR1 and GluR2 flip and flop mRNA levels in hippocampus at 2, 4, 12, 24, and 72 hours after a single episode of induced electroconvulsive seizures (ECS) in rats. NgR1 and LOTUS mRNA levels were transiently downregulated in the dentate gyrus 2, 4, 12 and 4, 12, 24 h after ECS treatment, respectively. GluR2 flip, flop and GluR1 flop were downregulated at 4 h. GluR2 flip remained downregulated at 12 h. In contrast, BDNF, NgR3 and GluR1 flip mRNA levels were upregulated. Thus, ECS treatment induces a transient regulation of factors important for neuronal plasticity. Our data provide correlations between ECS treatment and molecular events compatible with the hypothesis that both effects and side effects of ECT may be caused by structural synaptic rearrangements.}},
  author       = {{Nordgren, Max and Karlsson, Tobias and Svensson, Maria and Koczy, Josefin and Josephson, Anna and Olson, Lars and Tingström, Anders and Brene, Stefan}},
  issn         = {{1932-6203}},
  language     = {{eng}},
  number       = {{11}},
  publisher    = {{Public Library of Science (PLoS)}},
  series       = {{PLoS ONE}},
  title        = {{Orchestrated Regulation of Nogo Receptors, Lotus, AMPA Receptors and BDNF in an ECT Model Suggests Opening and Closure of a Window of Synaptic Plasticity}},
  url          = {{https://lup.lub.lu.se/search/files/3101883/4437972}},
  doi          = {{10.1371/journal.pone.0078778}},
  volume       = {{8}},
  year         = {{2013}},
}