Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Numerical Simulations for Studies of Unsteady Combustion in Practical Combustion Devices

Möller, Sven-Inge LU (2002)
Abstract
A major problem in the design of combustion equipment is to prevent the occurrence of combustion instabilities. Combustion instabilities appear as periodic oscillations in pressure and heat release through a feedback mechanism between the fluid dynamics and the combustion process. These oscillations may induce e.g. mechanical vibrations and increased heat transfer, leading to poor performance or even total loss of the system. The characteristic features of the unsteady combustion process observed for combustion instabilities can also be utilized advantageously in certain applications, e.g. pulse combustors. In pulsating combustion, the oscillations are utilized to enhance the efficiency and reduce emission of pollutants. The interaction... (More)
A major problem in the design of combustion equipment is to prevent the occurrence of combustion instabilities. Combustion instabilities appear as periodic oscillations in pressure and heat release through a feedback mechanism between the fluid dynamics and the combustion process. These oscillations may induce e.g. mechanical vibrations and increased heat transfer, leading to poor performance or even total loss of the system. The characteristic features of the unsteady combustion process observed for combustion instabilities can also be utilized advantageously in certain applications, e.g. pulse combustors. In pulsating combustion, the oscillations are utilized to enhance the efficiency and reduce emission of pollutants. The interaction between fluid dynamics and the chemical reactions play an important role in unsteady combustion processes. The mechanisms in the feedback process in terms of injection, mixing and ignition are of particular importance.



The objective of this thesis is to utilize numerical simulations for studies of unsteady combustion. A physical or theoretical model for chemically reacting mixtures, based upon the theory of mixtures within continuum mechanics, is presented. A reduced physical model consisting of equations for conservation of mass for the mixture, balance of mass for the constituents and conservation of momentum and energy for the mixture is derived. With suitable constitutive relations a closed system of non-linear partial differential equations is achieved. A simulation model is derived from the reduced physical model. For numerical treatment of turbulent flow, the conservation and balance equations are spatially filtered according to the Large Eddy Simulation (LES) technique. The interaction from the small-scale fluctuations on the large-scale flow field is modelled by Sub Grid Scale models. The equations are discretized according to the Finite Volume Method.



The model presented has been used for simulation of test rig assimilating the jet engine after burner, featuring unsteady flow in terms of a fluctuating vortex street. Additionally, the unsteady combustion process found in pulse combustors of Helmholtz type has been simulated. Results from the simulations have been validated against a number of experimental data, such as time resolved velocity fields, chemiluminescence from OH and CH, OH-LIF, as well as pressure and flue gas composition. The simulation model is found able to mimic most of the characteristic features of the unsteady combustion processes. Numerical simulations can serve as a useful tool for studies of unsteady combustion. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Magnussen, Björn
organization
publishing date
type
Thesis
publication status
published
subject
keywords
plasmas, fluiddynamik, Gaser, plasma, Thermal engineering, applied thermodynamics, termodynamik, Termisk teknik, fluid dynamics, Gases, Physics, Fysik, Fysicumarkivet A:2002:Möller
pages
150 pages
defense location
Sal B, Fysikum
defense date
2002-04-05 10:15:00
language
English
LU publication?
yes
additional info
Article: E. Lundgren and S.-I. Möller: On the Set of Governing Equations for Reactive and Diffusive Material Systems Applied to Combustion, Proceedings of the 9th International Symposium on Transport Phenomena (ISTP-9) in Thermal-Fluids Engineering, Singapore, June 25 - 28, 1996, Vol. I, pp. 232-237. Article: C. Fureby and S.-I. Möller: Large Eddy Simulation of Reacting Flows Applied to Bluff Body Stabilized Flames, AIAA Journal, Vol. 33 No. 12, 1995, pp. 2339-2347. Article: S.-I. Möller, E. Lundgren and C. Fureby: Large Eddy Simulation of Unsteady Combustion, Proceedings of the Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, 1996, pp. 241-248. Article: A. Lindholm and S.-I. Möller: Measurements and Simulations of the Fluid Dynamics and Heat Release in a Flat Pulse Combustor, Proceedings of the 16th International Colloquium on the Dynamics of Explosions and Reactive Systems, Krakow, 1997, pp. 58-61. Article: S.-I. Möller and A. Lindholm: Theoretical and Experimental Investigation of the Operating Characteristics of a Helmholtz Type Pulse Combustor due to Changes in the Inlet Geometry, Combustion Science and Technology, 1999, Vol. 149, pp. 389-406. Article: A. Lindholm, S.-I. Möller, J. Hult, J. Olofsson and M. Aldén: Ignition, Flame Growth and Extinction in Premixed Combustion Dominated by a Strongly Oscillating Flow Field, To be submitted.
id
401ba990-c5c3-4e14-bc01-c3108124373a (old id 464503)
date added to LUP
2016-04-04 09:22:15
date last changed
2018-11-21 20:52:38
@phdthesis{401ba990-c5c3-4e14-bc01-c3108124373a,
  abstract     = {{A major problem in the design of combustion equipment is to prevent the occurrence of combustion instabilities. Combustion instabilities appear as periodic oscillations in pressure and heat release through a feedback mechanism between the fluid dynamics and the combustion process. These oscillations may induce e.g. mechanical vibrations and increased heat transfer, leading to poor performance or even total loss of the system. The characteristic features of the unsteady combustion process observed for combustion instabilities can also be utilized advantageously in certain applications, e.g. pulse combustors. In pulsating combustion, the oscillations are utilized to enhance the efficiency and reduce emission of pollutants. The interaction between fluid dynamics and the chemical reactions play an important role in unsteady combustion processes. The mechanisms in the feedback process in terms of injection, mixing and ignition are of particular importance.<br/><br>
<br/><br>
The objective of this thesis is to utilize numerical simulations for studies of unsteady combustion. A physical or theoretical model for chemically reacting mixtures, based upon the theory of mixtures within continuum mechanics, is presented. A reduced physical model consisting of equations for conservation of mass for the mixture, balance of mass for the constituents and conservation of momentum and energy for the mixture is derived. With suitable constitutive relations a closed system of non-linear partial differential equations is achieved. A simulation model is derived from the reduced physical model. For numerical treatment of turbulent flow, the conservation and balance equations are spatially filtered according to the Large Eddy Simulation (LES) technique. The interaction from the small-scale fluctuations on the large-scale flow field is modelled by Sub Grid Scale models. The equations are discretized according to the Finite Volume Method.<br/><br>
<br/><br>
The model presented has been used for simulation of test rig assimilating the jet engine after burner, featuring unsteady flow in terms of a fluctuating vortex street. Additionally, the unsteady combustion process found in pulse combustors of Helmholtz type has been simulated. Results from the simulations have been validated against a number of experimental data, such as time resolved velocity fields, chemiluminescence from OH and CH, OH-LIF, as well as pressure and flue gas composition. The simulation model is found able to mimic most of the characteristic features of the unsteady combustion processes. Numerical simulations can serve as a useful tool for studies of unsteady combustion.}},
  author       = {{Möller, Sven-Inge}},
  keywords     = {{plasmas; fluiddynamik; Gaser; plasma; Thermal engineering; applied thermodynamics; termodynamik; Termisk teknik; fluid dynamics; Gases; Physics; Fysik; Fysicumarkivet A:2002:Möller}},
  language     = {{eng}},
  school       = {{Lund University}},
  title        = {{Numerical Simulations for Studies of Unsteady Combustion in Practical Combustion Devices}},
  year         = {{2002}},
}