Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Tendency of soil erosion dynamics by coupling radioisotopes and RUSLE model on the Southeastern Tibetan Plateau in response to climate warming and human activity

Chen, Peng LU ; Czymzik, Markus LU ; Yu, Zhongbo ; Aldahan, Ala ; Wang, Jinguo ; Yi, Peng ; Hou, Xiaolin ; Guo, Shouyan and Zheng, Minjie LU (2023) In Catena 223.
Abstract

Soil erosion has created landscape problems in many parts of the world and in particular in cold regions where the sensitive permafrost conditions have changed due to climate warming. Such a case occurred in the Tibetan Plateau (TP), which has been strongly affected by global warming and human activities. Monitoring technologies, like remote sensing and field surveys were used to explore soil erosion rates in the TP, but they were limited by the resolution and meteorological disturbance factors or the spatial and time scales. Here, we present for the first time 210Pbex (excess lead-210) and 137Cs (caesium-137) data of soils from the southeastern TP (SETP) covering an area of 640,000 km2. In... (More)

Soil erosion has created landscape problems in many parts of the world and in particular in cold regions where the sensitive permafrost conditions have changed due to climate warming. Such a case occurred in the Tibetan Plateau (TP), which has been strongly affected by global warming and human activities. Monitoring technologies, like remote sensing and field surveys were used to explore soil erosion rates in the TP, but they were limited by the resolution and meteorological disturbance factors or the spatial and time scales. Here, we present for the first time 210Pbex (excess lead-210) and 137Cs (caesium-137) data of soils from the southeastern TP (SETP) covering an area of 640,000 km2. In the permafrost-dominant areas, the results show mean soil-erosion rates in the last 56–100 years that were relatively higher (1891 t·km−2·a-1) based on 210Pbex than those based on 137Cs (1623 t·km−2·a-1). Modelling results from the Revised Universal Soil Loss Equation (RUSLE) indicate relatively high mean soil erosion rates of 4363 and 4394 t·km−2·a-1 using a period covering the last 40 or 10 years respectively. Our data suggest accelerating erosion rates on the SETP that are linked to permafrost degradation, and glacier and snow melting due to accelerating global climate warming. The increase in ground surface temperature of ∼2 °C in the last four decades has further shifted the regional hydrology, affecting the degeneration of vegetation cover and a further increase in soil-erosion rates. However, our radionuclides data also expose low erosion rates in the seasonally frozen ground at some sampling sites which indicates the complex nature of erosion trends in cold regions that require careful adaptation of soil management.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Pb and Cs, Climate warming and human activity, RUSLE, Soil erosion, Southeastern Tibetan Plateau
in
Catena
volume
223
article number
106954
publisher
Elsevier
external identifiers
  • scopus:85146544337
ISSN
0341-8162
DOI
10.1016/j.catena.2023.106954
language
English
LU publication?
yes
id
4a57f27f-01e9-4bc9-aed1-63cfa753de3d
date added to LUP
2023-02-10 14:21:15
date last changed
2023-02-10 14:21:15
@article{4a57f27f-01e9-4bc9-aed1-63cfa753de3d,
  abstract     = {{<p>Soil erosion has created landscape problems in many parts of the world and in particular in cold regions where the sensitive permafrost conditions have changed due to climate warming. Such a case occurred in the Tibetan Plateau (TP), which has been strongly affected by global warming and human activities. Monitoring technologies, like remote sensing and field surveys were used to explore soil erosion rates in the TP, but they were limited by the resolution and meteorological disturbance factors or the spatial and time scales. Here, we present for the first time <sup>210</sup>Pb<sub>ex</sub> (excess lead-210) and <sup>137</sup>Cs (caesium-137) data of soils from the southeastern TP (SETP) covering an area of 640,000 km<sup>2</sup>. In the permafrost-dominant areas, the results show mean soil-erosion rates in the last 56–100 years that were relatively higher (1891 t·km<sup>−2</sup>·a<sup>-1</sup>) based on <sup>210</sup>Pb<sub>ex</sub> than those based on <sup>137</sup>Cs (1623 t·km<sup>−2</sup>·a<sup>-1</sup>). Modelling results from the Revised Universal Soil Loss Equation (RUSLE) indicate relatively high mean soil erosion rates of 4363 and 4394 t·km<sup>−2</sup>·a<sup>-1</sup> using a period covering the last 40 or 10 years respectively. Our data suggest accelerating erosion rates on the SETP that are linked to permafrost degradation, and glacier and snow melting due to accelerating global climate warming. The increase in ground surface temperature of ∼2 °C in the last four decades has further shifted the regional hydrology, affecting the degeneration of vegetation cover and a further increase in soil-erosion rates. However, our radionuclides data also expose low erosion rates in the seasonally frozen ground at some sampling sites which indicates the complex nature of erosion trends in cold regions that require careful adaptation of soil management.</p>}},
  author       = {{Chen, Peng and Czymzik, Markus and Yu, Zhongbo and Aldahan, Ala and Wang, Jinguo and Yi, Peng and Hou, Xiaolin and Guo, Shouyan and Zheng, Minjie}},
  issn         = {{0341-8162}},
  keywords     = {{Pb and Cs; Climate warming and human activity; RUSLE; Soil erosion; Southeastern Tibetan Plateau}},
  language     = {{eng}},
  publisher    = {{Elsevier}},
  series       = {{Catena}},
  title        = {{Tendency of soil erosion dynamics by coupling radioisotopes and RUSLE model on the Southeastern Tibetan Plateau in response to climate warming and human activity}},
  url          = {{http://dx.doi.org/10.1016/j.catena.2023.106954}},
  doi          = {{10.1016/j.catena.2023.106954}},
  volume       = {{223}},
  year         = {{2023}},
}