Experimental studies of ion transport in cementitious materials under partially saturated conditions
(2018)- Abstract
- Cement production is responsible for a significant portion of manmade CO2 emissions. This motivates the development of cementitious binders with a lower carbon footprint. Considering the emissions in a longer perspective, the durability of concrete structures is absolutely essential. Most degradation of concrete structures is closely related to both moisture transport and ion transport. Many studies have investigated these areas under saturated conditions. Owing to varying exposure conditions and self-desiccation, most concrete structures undergo large variations in moisture state during their service life. The coupling between ionic transport and moisture transport in cementitious materials under partially saturated conditions is still... (More)
- Cement production is responsible for a significant portion of manmade CO2 emissions. This motivates the development of cementitious binders with a lower carbon footprint. Considering the emissions in a longer perspective, the durability of concrete structures is absolutely essential. Most degradation of concrete structures is closely related to both moisture transport and ion transport. Many studies have investigated these areas under saturated conditions. Owing to varying exposure conditions and self-desiccation, most concrete structures undergo large variations in moisture state during their service life. The coupling between ionic transport and moisture transport in cementitious materials under partially saturated conditions is still poorly understood. This project aimed to contribute to the knowledge in this area.
Service life models can be used to predict the performance of the material over time, but fundamental understanding of the underlying physical and chemical relations is critical for the development of accurate models. In this project, these physical relations of unsaturated ion transport were studied experimentally. The moisture dependency of ionic diffusion and ionic convection was investigated in two studies. The experimental investigations were performed on mortars with two water to binder ratios (0.38 and 0.53) and with four binders (OPC, 95% OPC + 5% silica fume, 60% OPC + 40% GGBFS, and 30% OPC + 70% GGBFS).
In the diffusion study, resistivity measurements and the Nernst-Einstein equation were used to evaluate the moisture dependency of the chloride diffusion coefficient, i.e., DCl(RH) and DCl(S). Desorption isotherms were determined using a gravimetric box method, and the conductivity of pore solutions was evaluated in two different ways. First, a simplified method was used. The limitation of this method is that it can only assess the pore solution composition for the OPC mortars. Second, a thermodynamic modeling tool, GEMS, was used to assess the pore solution composition and the chloride diffusion coefficient for all mortars. It was found that DCl(S) is independent of w/b, but the relation differs between binders, and for the individual binders, there seems to be a relation between DCl(RH) and the desorption isotherm.
Convective ion transport is more complicated to study because it is difficult to decouple ionic transport from moisture transport. For cementitious materials, it is difficult, or maybe impossible, to design an experimental setup where the ionic species are affected by convective transport only. Cementitious materials are by definition reacting with water, and therefore, there will be interactions between the solid phases and the pore solution, especially under non-saturated conditions.
Wick action experiments in combination with measurements of material properties were chosen for the investigation of convective ion transport. Chloride profiles and moisture profiles were evaluated with microXRF and 1H NMR relaxometry, respectively. The measured profiles were discussed in relation to the moisture dependent material properties, such as chloride diffusion coefficients, moisture diffusion coefficients, chloride binding capacities, and desorption isotherms. It was concluded that there is a large variation in moisture dependency of the moisture diffusion coefficient, and that the variation cannot be related to the desorption isotherms. It was also shown that the composition of the binder is the key factor affecting the chloride penetration depth. The measured material properties are important parameters for prediction of chloride ingress and all are strongly affected by the binder composition.
(Less) - Abstract (Swedish)
- Cementproduktion står idag för en ansenlig andel av världens koldioxidutsläpp, vilket driver utvecklingen av bindemedel med lägre koldioxidutsläpp. För utsläppen i ett längre perspektiv är dock de nya bindemedlens beständighet absolut avgörande. De flesta nedbrytningsmekanismer är direkt relaterade till både fukt- och jontransport. Dessa processer har undersökts i många studier, men huvudsakligen under fuktmättade förhållanden. På grund av varierande exponeringsförhållande och självuttorkning varierar dock fuktförhållandena i en betongkonstruktion mycket under dess livslängd och det saknas kunskap om relationen mellan jontransport och fukttransport under omättade förhållanden. Målet med detta projekt var att bidra med ny kunskap inom detta... (More)
- Cementproduktion står idag för en ansenlig andel av världens koldioxidutsläpp, vilket driver utvecklingen av bindemedel med lägre koldioxidutsläpp. För utsläppen i ett längre perspektiv är dock de nya bindemedlens beständighet absolut avgörande. De flesta nedbrytningsmekanismer är direkt relaterade till både fukt- och jontransport. Dessa processer har undersökts i många studier, men huvudsakligen under fuktmättade förhållanden. På grund av varierande exponeringsförhållande och självuttorkning varierar dock fuktförhållandena i en betongkonstruktion mycket under dess livslängd och det saknas kunskap om relationen mellan jontransport och fukttransport under omättade förhållanden. Målet med detta projekt var att bidra med ny kunskap inom detta område.
Livslängdsmodeller kan användas för att prognostisera vad som händer i material över tid, men för att modellerna ska kunna ge tillförlitliga prognoser krävs grundläggande förståelse för de underliggande fysikaliska och kemiska relationerna i materialet. I detta projekt undersöktes dessa fysikaliska relationer experimentellt. Projektet är uppdelat i två studier där fuktberoendet hos jondiffusion respektive jonkonvektion undersöktes. Experimenten gjordes med bruk med två vattenbindemedelstal (0. 38 och 0.53) och med fyra bindemedel (OPC, 95% OPC + 5% kiselstoft, 60% OPC + 40% GGBFS, och 30% OPC + 70% GGBFS).
I diffusionsstudien användes resistivitetsmätningar och Nernst-Einsteins ekvation för att utvärdera fuktberoendet hos kloriddiffusionskoefficienten, d.v.s. DCl(RH) och DCl(S). Desorptionsisotermer mättes med en gravimetrisk boxmetod och konduktiviteten hos porlösningen bestämdes med två olika metoder. Först användes en förenklad metod för bestämning av porlösningens sammansättning. Begränsningen med denna metod är att den bara möjliggör bestämning av porläsningens sammansättning för bruk med OPC som bindemedel. Därför användes sedan även ett termodynamiskt modelleringsprogram, GEMS, för att bestämma porlösningens sammansättning och kloriddiffusionskoefficienten för alla bruk. Resultaten visade att DCl(S) är oberoende av vattenbindemedelstalt, men att detta beroende varierar mellan de studerade bindemedlen. Resultaten visade även att det verkar finnas en relation mellan DCl(RH) och desorptionsisotermen för de olika bindemedlen.
Konvektiv jontransport är mer komplicerat att studera eftersom det är svårt att särskilja jontransport och fukttransport. För cementbaserade material är det svårt, och kanske omöjligt, att designa ett experiment där jontransporten endast påverkas av den konvektiva fukttransporten. Cementbaserade material är per definition material som reagerar med vatten. Därför kommer det alltid att ske ett utbyte mellan porlösning och de fasta faserna, speciellt under icke mättade förhållanden.
För att studera konvektiv jontransport gjordes wick action experiment. Efter wick action exponering mättes kloridprofiler och fuktprofiler med mikroXRF respektive 1H NMR relaxometri. De uppmätta profilerna diskuterades i relation till fuktberoende materialegenskaper, såsom kloriddiffusionskoefficienter, fukt-diffusionskoefficienter, kloridbindningskapacitet och desorptionsisotermer. Fuktdiffusionskoefficienter mättes parallellt i denna studie. Dessa resultat visade att det finns stora variationer i fuktberoendet mellan de olika bindemedlen och att dessa variationer inte kan kopplas till desorptionsisotermerna. I studien visades även att bindemedlet sammansättning är den egenskap som tydligast påverkar inträngningsdjupet av klorid. De uppmätta materialegenskaperna är dock alla viktiga parametrar för prognostisering av kloridinträngning och alla dessa materialegenskaper påverkas av bindemedelssammansättningen.
(Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/5a4ca24a-044b-4115-b6e1-2b6873d37685
- author
- Olsson, Nilla LU
- supervisor
- opponent
-
- Professor Geiker, Mette, NTNU, Norway
- organization
- alternative title
- Experimentella studier av omättad jontransport i cementbaserade material
- publishing date
- 2018
- type
- Thesis
- publication status
- published
- subject
- keywords
- Cement, Bruk, Betong, Jontransport, Fukttransport, Sorptionsisoterm, Tillsatsmaterial, Kiselstoft, Masugnsslagg, Ciment, Mortier, Béton, Transport ionique, Transport d'humidité, Sorption de vapeur d'eau, Additions minérales, Fumée de silice, Laitier de haut fourneau granulé moulu, Cement, Mortar, Concrete, Ion transport, moisture transport, Water vapor sorption, Supplementary cementitious materials (SCMs), Silica fume, Ground granulated blast furnace slag
- pages
- 152 pages
- defense location
- V:B, V-building, John Ericssons väg 1, Lund University, Faculty of Engineering LTH.
- defense date
- 2018-06-08 10:15:00
- ISBN
- 978-91-7753-667-3
- 978-91-7753-668-0
- language
- English
- LU publication?
- yes
- id
- 5a4ca24a-044b-4115-b6e1-2b6873d37685
- date added to LUP
- 2018-04-30 09:51:43
- date last changed
- 2018-11-21 21:39:37
@phdthesis{5a4ca24a-044b-4115-b6e1-2b6873d37685, abstract = {{Cement production is responsible for a significant portion of manmade CO2 emissions. This motivates the development of cementitious binders with a lower carbon footprint. Considering the emissions in a longer perspective, the durability of concrete structures is absolutely essential. Most degradation of concrete structures is closely related to both moisture transport and ion transport. Many studies have investigated these areas under saturated conditions. Owing to varying exposure conditions and self-desiccation, most concrete structures undergo large variations in moisture state during their service life. The coupling between ionic transport and moisture transport in cementitious materials under partially saturated conditions is still poorly understood. This project aimed to contribute to the knowledge in this area.<br/>Service life models can be used to predict the performance of the material over time, but fundamental understanding of the underlying physical and chemical relations is critical for the development of accurate models. In this project, these physical relations of unsaturated ion transport were studied experimentally. The moisture dependency of ionic diffusion and ionic convection was investigated in two studies. The experimental investigations were performed on mortars with two water to binder ratios (0.38 and 0.53) and with four binders (OPC, 95% OPC + 5% silica fume, 60% OPC + 40% GGBFS, and 30% OPC + 70% GGBFS). <br/>In the diffusion study, resistivity measurements and the Nernst-Einstein equation were used to evaluate the moisture dependency of the chloride diffusion coefficient, i.e., DCl(RH) and DCl(S). Desorption isotherms were determined using a gravimetric box method, and the conductivity of pore solutions was evaluated in two different ways. First, a simplified method was used. The limitation of this method is that it can only assess the pore solution composition for the OPC mortars. Second, a thermodynamic modeling tool, GEMS, was used to assess the pore solution composition and the chloride diffusion coefficient for all mortars. It was found that DCl(S) is independent of w/b, but the relation differs between binders, and for the individual binders, there seems to be a relation between DCl(RH) and the desorption isotherm.<br/>Convective ion transport is more complicated to study because it is difficult to decouple ionic transport from moisture transport. For cementitious materials, it is difficult, or maybe impossible, to design an experimental setup where the ionic species are affected by convective transport only. Cementitious materials are by definition reacting with water, and therefore, there will be interactions between the solid phases and the pore solution, especially under non-saturated conditions. <br/>Wick action experiments in combination with measurements of material properties were chosen for the investigation of convective ion transport. Chloride profiles and moisture profiles were evaluated with microXRF and 1H NMR relaxometry, respectively. The measured profiles were discussed in relation to the moisture dependent material properties, such as chloride diffusion coefficients, moisture diffusion coefficients, chloride binding capacities, and desorption isotherms. It was concluded that there is a large variation in moisture dependency of the moisture diffusion coefficient, and that the variation cannot be related to the desorption isotherms. It was also shown that the composition of the binder is the key factor affecting the chloride penetration depth. The measured material properties are important parameters for prediction of chloride ingress and all are strongly affected by the binder composition. <br/>}}, author = {{Olsson, Nilla}}, isbn = {{978-91-7753-667-3}}, keywords = {{Cement; Bruk; Betong; Jontransport; Fukttransport; Sorptionsisoterm; Tillsatsmaterial; Kiselstoft; Masugnsslagg; Ciment; Mortier; Béton; Transport ionique; Transport d'humidité; Sorption de vapeur d'eau; Additions minérales; Fumée de silice; Laitier de haut fourneau granulé moulu; Cement; Mortar; Concrete; Ion transport; moisture transport; Water vapor sorption; Supplementary cementitious materials (SCMs); Silica fume; Ground granulated blast furnace slag}}, language = {{eng}}, school = {{Lund University}}, title = {{Experimental studies of ion transport in cementitious materials under partially saturated conditions}}, url = {{https://lup.lub.lu.se/search/files/42543361/Nilla_Olsson_WEBB.PDF}}, year = {{2018}}, }