Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Slowing Down Type II Migration of Gas Giants to Match Observational Data

Ida, Shigeru ; Tanaka, Hidekazu ; Johansen, Anders LU ; Kanagawa, Kazuhiro D. and Tanigawa, Takayuki (2018) In Astrophysical Journal 864(1).
Abstract

The mass and semimajor axis distribution of gas giants in exoplanetary systems obtained by radial velocity surveys shows that super-Jupiter-mass planets are piled up at 1 au, while Jupiter/sub-Jupiter-mass planets are broadly distributed from ∼0.03 au to beyond 1 au. This feature has not been explained by theoretical predictions. In order to reconcile this inconsistency, we investigate evolution of gas giants with a new type II migration formula by Kanagawa et al., by comparing the migration, growth timescales of gas giants, and disk lifetime, and by population synthesis simulation. While the classical migration model assumes that a gas giant opens up a clear gap in the protoplanetary disk and the planet migration is tied to the disk... (More)

The mass and semimajor axis distribution of gas giants in exoplanetary systems obtained by radial velocity surveys shows that super-Jupiter-mass planets are piled up at 1 au, while Jupiter/sub-Jupiter-mass planets are broadly distributed from ∼0.03 au to beyond 1 au. This feature has not been explained by theoretical predictions. In order to reconcile this inconsistency, we investigate evolution of gas giants with a new type II migration formula by Kanagawa et al., by comparing the migration, growth timescales of gas giants, and disk lifetime, and by population synthesis simulation. While the classical migration model assumes that a gas giant opens up a clear gap in the protoplanetary disk and the planet migration is tied to the disk gas accretion, recent high-resolution simulations show that the migration of gap-opening planets is decoupled from the disk gas accretion and Kanagawa et al. proposed that type II migration speed is nothing other than type I migration speed with the reduced disk gas surface density in the gap. We show that with this new formula, type II migration is significantly reduced for super-Jupiter-mass planets, if the disk accretion is driven by the disk wind as suggested by recent magnetohydrodynamic simulations. Population synthesis simulations show that super-Jupiter-mass planets remain at 1 au without any additional ingredient such as disk photoevaporation. Therefore, the mystery of the pile-up of gas giants at 1 au will be theoretically solved if the new formula is confirmed and wind-driven disk accretion dominates.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
in
Astrophysical Journal
volume
864
issue
1
article number
77
publisher
American Astronomical Society
external identifiers
  • scopus:85053105214
ISSN
0004-637X
DOI
10.3847/1538-4357/aad69c
language
English
LU publication?
yes
id
5aec8234-4058-4b01-9e96-08cfac9772aa
date added to LUP
2018-10-12 14:26:30
date last changed
2024-04-15 15:14:52
@article{5aec8234-4058-4b01-9e96-08cfac9772aa,
  abstract     = {{<p>The mass and semimajor axis distribution of gas giants in exoplanetary systems obtained by radial velocity surveys shows that super-Jupiter-mass planets are piled up at 1 au, while Jupiter/sub-Jupiter-mass planets are broadly distributed from ∼0.03 au to beyond 1 au. This feature has not been explained by theoretical predictions. In order to reconcile this inconsistency, we investigate evolution of gas giants with a new type II migration formula by Kanagawa et al., by comparing the migration, growth timescales of gas giants, and disk lifetime, and by population synthesis simulation. While the classical migration model assumes that a gas giant opens up a clear gap in the protoplanetary disk and the planet migration is tied to the disk gas accretion, recent high-resolution simulations show that the migration of gap-opening planets is decoupled from the disk gas accretion and Kanagawa et al. proposed that type II migration speed is nothing other than type I migration speed with the reduced disk gas surface density in the gap. We show that with this new formula, type II migration is significantly reduced for super-Jupiter-mass planets, if the disk accretion is driven by the disk wind as suggested by recent magnetohydrodynamic simulations. Population synthesis simulations show that super-Jupiter-mass planets remain at 1 au without any additional ingredient such as disk photoevaporation. Therefore, the mystery of the pile-up of gas giants at 1 au will be theoretically solved if the new formula is confirmed and wind-driven disk accretion dominates.</p>}},
  author       = {{Ida, Shigeru and Tanaka, Hidekazu and Johansen, Anders and Kanagawa, Kazuhiro D. and Tanigawa, Takayuki}},
  issn         = {{0004-637X}},
  language     = {{eng}},
  number       = {{1}},
  publisher    = {{American Astronomical Society}},
  series       = {{Astrophysical Journal}},
  title        = {{Slowing Down Type II Migration of Gas Giants to Match Observational Data}},
  url          = {{http://dx.doi.org/10.3847/1538-4357/aad69c}},
  doi          = {{10.3847/1538-4357/aad69c}},
  volume       = {{864}},
  year         = {{2018}},
}