Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

The fate of fixed nitrogen in marine sediments with low organic loading : An in situ study

Bonaglia, Stefano LU ; Hylén, Astrid ; Rattray, Jayne E. ; Kononets, Mikhail Y. ; Ekeroth, Nils ; Roos, Per ; Thamdrup, Bo ; Brüchert, Volker and Hall, Per O. J. (2017) In Biogeosciences 14(2). p.285-300
Abstract

Over the last decades, the impact of human activities on the global nitrogen (N) cycle has drastically increased. Consequently, benthic N cycling has mainly been studied in anthropogenically impacted estuaries and coasts, while in oligotrophic systems its understanding is still scarce. Here we report on benthic solute fluxes and on rates of denitrification, anammox, and dissimilatory nitrate reduction to ammonium (DNRA) studied by in situ incubations with benthic chamber landers during two cruises to the Gulf of Bothnia (GOB), a cold, oligotrophic basin located in the northern part of the Baltic Sea. Rates of N burial were also inferred to investigate the fate of fixed N in these sediments. Most of the total dissolved fixed nitrogen... (More)

Over the last decades, the impact of human activities on the global nitrogen (N) cycle has drastically increased. Consequently, benthic N cycling has mainly been studied in anthropogenically impacted estuaries and coasts, while in oligotrophic systems its understanding is still scarce. Here we report on benthic solute fluxes and on rates of denitrification, anammox, and dissimilatory nitrate reduction to ammonium (DNRA) studied by in situ incubations with benthic chamber landers during two cruises to the Gulf of Bothnia (GOB), a cold, oligotrophic basin located in the northern part of the Baltic Sea. Rates of N burial were also inferred to investigate the fate of fixed N in these sediments. Most of the total dissolved fixed nitrogen (TDN) diffusing to the water column was composed of organic N. Average rates of dinitrogen (N2) production by denitrification and anammox (range: 53-360gμNg-2g dayg-1) were comparable to those from Arctic and subarctic sediments worldwide (range: 34-344gμNg mg-2g dayg-1). Anammox accounted for 18-26g % of the total N2 production. Absence of free hydrogen sulfide and low concentrations of dissolved iron in sediment pore water suggested that denitrification and DNRA were driven by organic matter oxidation rather than chemolithotrophy. DNRA was as important as denitrification at a shallow, coastal station situated in the northern Bothnian Bay. At this pristine and fully oxygenated site, ammonium regeneration through DNRA contributed more than one-third to the TDN efflux and accounted, on average, for 45g % of total nitrate reduction. At the offshore stations, the proportion of DNRA in relation to denitrification was lower (0-16g % of total nitrate reduction). Median value and range of benthic DNRA rates from the GOB were comparable to those from the southern and central eutrophic Baltic Sea and other temperate estuaries and coasts in Europe. Therefore, our results contrast with the view that DNRA is negligible in cold and well-oxygenated sediments with low organic carbon loading. However, the mechanisms behind the variability in DNRA rates between our sites were not resolved. The GOB sediments were a major source (237g ktg yrg-1, which corresponds to 184g% of the external N load) of fixed N to the water column through recycling mechanisms. To our knowledge, our study is the first to document the simultaneous contribution of denitrification, DNRA, anammox, and TDN recycling combined with in situ measurements.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Biogeosciences
volume
14
issue
2
pages
16 pages
publisher
Copernicus GmbH
external identifiers
  • scopus:85010042141
  • wos:000394446000001
ISSN
1726-4170
DOI
10.5194/bg-14-285-2017
language
English
LU publication?
yes
id
6410a881-0598-4e90-84d0-aff26e79d934
date added to LUP
2017-02-15 09:02:02
date last changed
2024-05-26 09:25:57
@article{6410a881-0598-4e90-84d0-aff26e79d934,
  abstract     = {{<p>Over the last decades, the impact of human activities on the global nitrogen (N) cycle has drastically increased. Consequently, benthic N cycling has mainly been studied in anthropogenically impacted estuaries and coasts, while in oligotrophic systems its understanding is still scarce. Here we report on benthic solute fluxes and on rates of denitrification, anammox, and dissimilatory nitrate reduction to ammonium (DNRA) studied by in situ incubations with benthic chamber landers during two cruises to the Gulf of Bothnia (GOB), a cold, oligotrophic basin located in the northern part of the Baltic Sea. Rates of N burial were also inferred to investigate the fate of fixed N in these sediments. Most of the total dissolved fixed nitrogen (TDN) diffusing to the water column was composed of organic N. Average rates of dinitrogen (N2) production by denitrification and anammox (range: 53-360gμNg-2g dayg-1) were comparable to those from Arctic and subarctic sediments worldwide (range: 34-344gμNg mg-2g dayg<sup>-1</sup>). Anammox accounted for 18-26g % of the total N2 production. Absence of free hydrogen sulfide and low concentrations of dissolved iron in sediment pore water suggested that denitrification and DNRA were driven by organic matter oxidation rather than chemolithotrophy. DNRA was as important as denitrification at a shallow, coastal station situated in the northern Bothnian Bay. At this pristine and fully oxygenated site, ammonium regeneration through DNRA contributed more than one-third to the TDN efflux and accounted, on average, for 45g % of total nitrate reduction. At the offshore stations, the proportion of DNRA in relation to denitrification was lower (0-16g % of total nitrate reduction). Median value and range of benthic DNRA rates from the GOB were comparable to those from the southern and central eutrophic Baltic Sea and other temperate estuaries and coasts in Europe. Therefore, our results contrast with the view that DNRA is negligible in cold and well-oxygenated sediments with low organic carbon loading. However, the mechanisms behind the variability in DNRA rates between our sites were not resolved. The GOB sediments were a major source (237g ktg yrg<sup>-1</sup>, which corresponds to 184g% of the external N load) of fixed N to the water column through recycling mechanisms. To our knowledge, our study is the first to document the simultaneous contribution of denitrification, DNRA, anammox, and TDN recycling combined with in situ measurements.</p>}},
  author       = {{Bonaglia, Stefano and Hylén, Astrid and Rattray, Jayne E. and Kononets, Mikhail Y. and Ekeroth, Nils and Roos, Per and Thamdrup, Bo and Brüchert, Volker and Hall, Per O. J.}},
  issn         = {{1726-4170}},
  language     = {{eng}},
  month        = {{01}},
  number       = {{2}},
  pages        = {{285--300}},
  publisher    = {{Copernicus GmbH}},
  series       = {{Biogeosciences}},
  title        = {{The fate of fixed nitrogen in marine sediments with low organic loading : An in situ study}},
  url          = {{http://dx.doi.org/10.5194/bg-14-285-2017}},
  doi          = {{10.5194/bg-14-285-2017}},
  volume       = {{14}},
  year         = {{2017}},
}