Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Analysis of the cell wall integrity pathway of Ashbya gossypii.

Lengeler, Klaus B ; Wasserstrom, Lisa LU ; Walther, Andrea and Wendland, Jürgen (2013) In Microbiological Research 168(10). p.607-614
Abstract
Fungal cells are exposed to rapidly changing environmental conditions, in particular with regard to the osmotic potential. This requires constant remodeling of the cell wall and, therefore, the cell wall integrity (CWI) MAP-kinase pathway plays a major role in shaping the fungal cell wall to protect from adverse external stresses. To provide a comprehensive functional analysis of the Ashbya gossypii CWI pathway we generated a set of ten deletion mutants in conserved components including the cell surface sensors AgWSC1 and AgMID2, a putative Rho1-guanine nucleotide exchange factor, AgTUS1, the protein kinase C, AgPKC1, the MAP-kinases AgBCK1, AgMKK1 and AgMPK1, and transcription factors known to be involved in CWI signaling AgRLM1, AgSWI4... (More)
Fungal cells are exposed to rapidly changing environmental conditions, in particular with regard to the osmotic potential. This requires constant remodeling of the cell wall and, therefore, the cell wall integrity (CWI) MAP-kinase pathway plays a major role in shaping the fungal cell wall to protect from adverse external stresses. To provide a comprehensive functional analysis of the Ashbya gossypii CWI pathway we generated a set of ten deletion mutants in conserved components including the cell surface sensors AgWSC1 and AgMID2, a putative Rho1-guanine nucleotide exchange factor, AgTUS1, the protein kinase C, AgPKC1, the MAP-kinases AgBCK1, AgMKK1 and AgMPK1, and transcription factors known to be involved in CWI signaling AgRLM1, AgSWI4 and AgSWI6. Deletion of AgPKC1 shows a severe growth defect with frequent tip cell lysis. Deletion of components of the MAP-kinase module generates a pronounced colony lysis phenotype in older regions of the mycelium. Cytoplasmic leakage was assayed using alkaline phosphatase and β-galactosidase release assays. This indicated that the lysis phenotypes of CWI pathway mutants may be useful to facilitate the isolation of riboflavin from A. gossypii. Remarkably, the Agwsc1 mutant showed a strong (up to 8-fold) increase of riboflavin in the growth medium compared to the parental strain. (Less)
Abstract (Swedish)
Fungal cells are exposed to rapidly changing environmental conditions, in particular with regard to the osmotic potential. This requires constant remodeling of the cell wall and, therefore, the cell wall integrity (CWI) MAP-kinase pathway plays a major role in shaping the fungal cell wall to protect from adverse external stresses. To provide a comprehensive functional analysis of the Ashbya gossypii CWI pathway we generated a set of ten deletion mutants in conserved components including the cell surface sensors AgWSC1 and AgMID2, a putative Rho1-guanine nucleotide exchange factor, AgTUS1, the protein kinase C, AgPKC1, the MAP-kinases AgBCK1, AgMKK1 and AgMPK1, and transcription factors known to be involved in CWI signaling AgRLM1, AgSWI4... (More)
Fungal cells are exposed to rapidly changing environmental conditions, in particular with regard to the osmotic potential. This requires constant remodeling of the cell wall and, therefore, the cell wall integrity (CWI) MAP-kinase pathway plays a major role in shaping the fungal cell wall to protect from adverse external stresses. To provide a comprehensive functional analysis of the Ashbya gossypii CWI pathway we generated a set of ten deletion mutants in conserved components including the cell surface sensors AgWSC1 and AgMID2, a putative Rho1-guanine nucleotide exchange factor, AgTUS1, the protein kinase C, AgPKC1, the MAP-kinases AgBCK1, AgMKK1 and AgMPK1, and transcription factors known to be involved in CWI signaling AgRLM1, AgSWI4 and AgSWI6. Deletion of AgPKC1 shows a severe growth defect with frequent tip cell lysis. Deletion of components of the MAP-kinase module generates a pronounced colony lysis phenotype in older regions of the mycelium. Cytoplasmic leakage was assayed using alkaline phosphatase and β-galactosidase release assays. This indicated that the lysis phenotypes of CWI pathway mutants may be useful to facilitate the isolation of riboflavin from A. gossypii. Remarkably, the Agwsc1 mutant showed a strong (up to 8-fold) increase of riboflavin in the growth medium compared to the parental strain. (Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Microbiological Research
volume
168
issue
10
pages
8 pages
publisher
Urban & Fischer Verlag
external identifiers
  • scopus:84884979699
  • pmid:23850207
ISSN
1618-0623
DOI
10.1016/j.micres.2013.06.008
language
English
LU publication?
yes
id
8b09abd5-3d8f-4bba-8691-ed764490221a
date added to LUP
2016-07-01 08:41:54
date last changed
2022-01-30 04:53:21
@article{8b09abd5-3d8f-4bba-8691-ed764490221a,
  abstract     = {{Fungal cells are exposed to rapidly changing environmental conditions, in particular with regard to the osmotic potential. This requires constant remodeling of the cell wall and, therefore, the cell wall integrity (CWI) MAP-kinase pathway plays a major role in shaping the fungal cell wall to protect from adverse external stresses. To provide a comprehensive functional analysis of the Ashbya gossypii CWI pathway we generated a set of ten deletion mutants in conserved components including the cell surface sensors AgWSC1 and AgMID2, a putative Rho1-guanine nucleotide exchange factor, AgTUS1, the protein kinase C, AgPKC1, the MAP-kinases AgBCK1, AgMKK1 and AgMPK1, and transcription factors known to be involved in CWI signaling AgRLM1, AgSWI4 and AgSWI6. Deletion of AgPKC1 shows a severe growth defect with frequent tip cell lysis. Deletion of components of the MAP-kinase module generates a pronounced colony lysis phenotype in older regions of the mycelium. Cytoplasmic leakage was assayed using alkaline phosphatase and β-galactosidase release assays. This indicated that the lysis phenotypes of CWI pathway mutants may be useful to facilitate the isolation of riboflavin from A. gossypii. Remarkably, the Agwsc1 mutant showed a strong (up to 8-fold) increase of riboflavin in the growth medium compared to the parental strain.}},
  author       = {{Lengeler, Klaus B and Wasserstrom, Lisa and Walther, Andrea and Wendland, Jürgen}},
  issn         = {{1618-0623}},
  language     = {{eng}},
  month        = {{12}},
  number       = {{10}},
  pages        = {{607--614}},
  publisher    = {{Urban & Fischer Verlag}},
  series       = {{Microbiological Research}},
  title        = {{Analysis of the cell wall integrity pathway of Ashbya gossypii.}},
  url          = {{http://dx.doi.org/10.1016/j.micres.2013.06.008}},
  doi          = {{10.1016/j.micres.2013.06.008}},
  volume       = {{168}},
  year         = {{2013}},
}