Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Twelve fundamental life histories evolving through allocation-dependent fecundity and survival

Johansson, Jacob LU ; Brännström, Åke ; Metz, Johan A.J. and Dieckmann, Ulf (2018) In Ecology and Evolution 8(6). p.3172-3186
Abstract

An organism's life history is closely interlinked with its allocation of energy between growth and reproduction at different life stages. Theoretical models have established that diminishing returns from reproductive investment promote strategies with simultaneous investment into growth and reproduction (indeterminate growth) over strategies with distinct phases of growth and reproduction (determinate growth). We extend this traditional, binary classification by showing that allocation-dependent fecundity and mortality rates allow for a large diversity of optimal allocation schedules. By analyzing a model of organisms that allocate energy between growth and reproduction, we find twelve types of optimal allocation schedules, differing... (More)

An organism's life history is closely interlinked with its allocation of energy between growth and reproduction at different life stages. Theoretical models have established that diminishing returns from reproductive investment promote strategies with simultaneous investment into growth and reproduction (indeterminate growth) over strategies with distinct phases of growth and reproduction (determinate growth). We extend this traditional, binary classification by showing that allocation-dependent fecundity and mortality rates allow for a large diversity of optimal allocation schedules. By analyzing a model of organisms that allocate energy between growth and reproduction, we find twelve types of optimal allocation schedules, differing qualitatively in how reproductive allocation increases with body mass. These twelve optimal allocation schedules include types with different combinations of continuous and discontinuous increase in reproduction allocation, in which phases of continuous increase can be decelerating or accelerating. We furthermore investigate how this variation influences growth curves and the expected maximum life span and body size. Our study thus reveals new links between eco-physiological constraints and life-history evolution and underscores how allocation-dependent fitness components may underlie biological diversity.

(Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
determinate growth, dynamic programming, indeterminate growth, marginal value theorem, reproductive allocation
in
Ecology and Evolution
volume
8
issue
6
pages
15 pages
publisher
Wiley-Blackwell
external identifiers
  • pmid:29607016
  • scopus:85044545738
ISSN
2045-7758
DOI
10.1002/ece3.3730
language
English
LU publication?
yes
id
927f9517-c23b-4416-864b-983e600f421e
date added to LUP
2018-04-11 13:13:57
date last changed
2024-07-08 12:29:08
@article{927f9517-c23b-4416-864b-983e600f421e,
  abstract     = {{<p>An organism's life history is closely interlinked with its allocation of energy between growth and reproduction at different life stages. Theoretical models have established that diminishing returns from reproductive investment promote strategies with simultaneous investment into growth and reproduction (indeterminate growth) over strategies with distinct phases of growth and reproduction (determinate growth). We extend this traditional, binary classification by showing that allocation-dependent fecundity and mortality rates allow for a large diversity of optimal allocation schedules. By analyzing a model of organisms that allocate energy between growth and reproduction, we find twelve types of optimal allocation schedules, differing qualitatively in how reproductive allocation increases with body mass. These twelve optimal allocation schedules include types with different combinations of continuous and discontinuous increase in reproduction allocation, in which phases of continuous increase can be decelerating or accelerating. We furthermore investigate how this variation influences growth curves and the expected maximum life span and body size. Our study thus reveals new links between eco-physiological constraints and life-history evolution and underscores how allocation-dependent fitness components may underlie biological diversity.</p>}},
  author       = {{Johansson, Jacob and Brännström, Åke and Metz, Johan A.J. and Dieckmann, Ulf}},
  issn         = {{2045-7758}},
  keywords     = {{determinate growth; dynamic programming; indeterminate growth; marginal value theorem; reproductive allocation}},
  language     = {{eng}},
  month        = {{03}},
  number       = {{6}},
  pages        = {{3172--3186}},
  publisher    = {{Wiley-Blackwell}},
  series       = {{Ecology and Evolution}},
  title        = {{Twelve fundamental life histories evolving through allocation-dependent fecundity and survival}},
  url          = {{http://dx.doi.org/10.1002/ece3.3730}},
  doi          = {{10.1002/ece3.3730}},
  volume       = {{8}},
  year         = {{2018}},
}