Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Application of a Magnetic-field-induced Transition in Fe x to Solar and Stellar Coronal Magnetic Field Measurements

Chen, Yajie ; Li, Wenxian LU ; Tian, Hui ; Bai, Xianyong ; Hutton, Roger LU and Brage, Tomas LU (2023) In Research in Astronomy and Astrophysics 23(2).
Abstract

Magnetic fields play a key role in driving a broad range of dynamic phenomena in the atmospheres of the Sun and other stars. Routine and accurate measurements of the magnetic fields at all the atmospheric layers are of critical importance to understand these magnetic activities, but in the solar and stellar coronae such a measurement is still a challenge due to the weak field strength and the high temperature. Recently, a magnetic-field-induced transition (MIT) of Fe x at 257.26 Å has been proposed for the magnetic field measurements in the solar and stellar coronae. In this review, we present an overview of recent progresses in the application of this method in astrophysics. We start by introducing the theory underlying the MIT method... (More)

Magnetic fields play a key role in driving a broad range of dynamic phenomena in the atmospheres of the Sun and other stars. Routine and accurate measurements of the magnetic fields at all the atmospheric layers are of critical importance to understand these magnetic activities, but in the solar and stellar coronae such a measurement is still a challenge due to the weak field strength and the high temperature. Recently, a magnetic-field-induced transition (MIT) of Fe x at 257.26 Å has been proposed for the magnetic field measurements in the solar and stellar coronae. In this review, we present an overview of recent progresses in the application of this method in astrophysics. We start by introducing the theory underlying the MIT method and reviewing the existing atomic data critical for the spectral modeling of Fe x lines. We also discuss the laboratory measurements that verify the potential capability of the MIT technique as a probe for diagnosing the plasma magnetic fields. We then continue by investigating the suitability and accuracy of solar and stellar coronal magnetic field measurements based on the MIT method through forward modeling. Furthermore, we discuss the application of the MIT method to the existing spectroscopic observations obtained by the Extreme-ultraviolet Imaging Spectrometer onboard Hinode. This novel technique provides a possible way for routine measurements of the magnetic fields in the solar and stellar coronae, but still requires further efforts to improve its accuracy. Finally, the challenges and prospects for future research on this topic are discussed.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Sun: corona, Sun: magnetic fields, Sun: UV radiation
in
Research in Astronomy and Astrophysics
volume
23
issue
2
article number
022001
publisher
IOP Publishing
external identifiers
  • scopus:85147160960
ISSN
1674-4527
DOI
10.1088/1674-4527/acaa8e
language
English
LU publication?
yes
id
c4db17dd-a1d6-484a-a869-2f47fa9f84e7
date added to LUP
2023-02-10 15:10:14
date last changed
2023-02-10 15:10:14
@article{c4db17dd-a1d6-484a-a869-2f47fa9f84e7,
  abstract     = {{<p>Magnetic fields play a key role in driving a broad range of dynamic phenomena in the atmospheres of the Sun and other stars. Routine and accurate measurements of the magnetic fields at all the atmospheric layers are of critical importance to understand these magnetic activities, but in the solar and stellar coronae such a measurement is still a challenge due to the weak field strength and the high temperature. Recently, a magnetic-field-induced transition (MIT) of Fe x at 257.26 Å has been proposed for the magnetic field measurements in the solar and stellar coronae. In this review, we present an overview of recent progresses in the application of this method in astrophysics. We start by introducing the theory underlying the MIT method and reviewing the existing atomic data critical for the spectral modeling of Fe x lines. We also discuss the laboratory measurements that verify the potential capability of the MIT technique as a probe for diagnosing the plasma magnetic fields. We then continue by investigating the suitability and accuracy of solar and stellar coronal magnetic field measurements based on the MIT method through forward modeling. Furthermore, we discuss the application of the MIT method to the existing spectroscopic observations obtained by the Extreme-ultraviolet Imaging Spectrometer onboard Hinode. This novel technique provides a possible way for routine measurements of the magnetic fields in the solar and stellar coronae, but still requires further efforts to improve its accuracy. Finally, the challenges and prospects for future research on this topic are discussed.</p>}},
  author       = {{Chen, Yajie and Li, Wenxian and Tian, Hui and Bai, Xianyong and Hutton, Roger and Brage, Tomas}},
  issn         = {{1674-4527}},
  keywords     = {{Sun: corona; Sun: magnetic fields; Sun: UV radiation}},
  language     = {{eng}},
  number       = {{2}},
  publisher    = {{IOP Publishing}},
  series       = {{Research in Astronomy and Astrophysics}},
  title        = {{Application of a Magnetic-field-induced Transition in Fe x to Solar and Stellar Coronal Magnetic Field Measurements}},
  url          = {{http://dx.doi.org/10.1088/1674-4527/acaa8e}},
  doi          = {{10.1088/1674-4527/acaa8e}},
  volume       = {{23}},
  year         = {{2023}},
}