Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Binding, interiorization and degradation of cholesteryl ester labelled chylomicron remnant particles by rat hepatocyte monolayers

Florén, Claes-Henrik LU and Nilsson, Åke LU (1977) In The Biochemical journal 168(3). p.483-494
Abstract
1. The cholesteryl ester of isolated chylomicron-remnant particles was efficiently degraded by hepatocyte monolayers. The degradation was sensitive to metabolic inhibitors. 2. With increasing amounts of remnant cholesteryl ester the rate of uptake approached saturation and conformed to a linear double-reciprocal plot. The V(max.) was determined as 80ng of cholesteryl ester/h per mg of protein and the apparent K(m) as 1.4mug of cholesteryl ester per mg of protein. The time course for the uptake and hydrolysis suggested that binding of particles to the cell surface preceded the degradation. 3. Cholesteryl esters of native chylomicrons were degraded to a much smaller extent and their presence had only a small inhibitory effect on the... (More)
1. The cholesteryl ester of isolated chylomicron-remnant particles was efficiently degraded by hepatocyte monolayers. The degradation was sensitive to metabolic inhibitors. 2. With increasing amounts of remnant cholesteryl ester the rate of uptake approached saturation and conformed to a linear double-reciprocal plot. The V(max.) was determined as 80ng of cholesteryl ester/h per mg of protein and the apparent K(m) as 1.4mug of cholesteryl ester per mg of protein. The time course for the uptake and hydrolysis suggested that binding of particles to the cell surface preceded the degradation. 3. Cholesteryl esters of native chylomicrons were degraded to a much smaller extent and their presence had only a small inhibitory effect on the degradation of chylomicron remnants. Intestinal very-low-density lipoproteins were degraded somewhat faster than chylomicrons, and caused more inhibition of remnant degradation. Rat high-density lipoproteins inhibited the hydrolysis of remnant cholesteryl ester by up to 50%, but had less influence on the amount of cholesteryl ester that was bound to the cells. Serum decreased both the uptake and hydrolysis, whereas d=1.21 infranatant had no effect. 4. The cholesteryl ester hydrolysis after the uptake by the cells was inhibited by chloroquine and by colchicine. Only 28-36% of the unhydrolysed cholesteryl ester could be released from these cells by trypsin treatment, indicating that the major portion was truly intracellular. The particles that could be released from the cell surface by trypsin and those remaining in the medium had the same triacylglycerol/cholesteryl ester ratio as the added remnant particles. Significant amounts of denser particles were thus not formed during contact with the cell surface. 5. The presence of heparin, as well as preincubation of the cells with heparin, increased the uptake of chylomicron remnants. This effect was most marked in the presence of serum. A much smaller proportion of the other serum lipoproteins was taken up, and this proportion was not increased by heparin. (Less)
Please use this url to cite or link to this publication:
author
and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
The Biochemical journal
volume
168
issue
3
pages
11 pages
publisher
Portland Press
external identifiers
  • scopus:0017741991
ISSN
0264-6021
DOI
10.1042/bj1680483
language
English
LU publication?
yes
id
d5041bb6-8657-412a-9321-774ac2cb97b0
date added to LUP
2019-05-24 21:29:54
date last changed
2024-01-01 07:34:29
@article{d5041bb6-8657-412a-9321-774ac2cb97b0,
  abstract     = {{1. The cholesteryl ester of isolated chylomicron-remnant particles was efficiently degraded by hepatocyte monolayers. The degradation was sensitive to metabolic inhibitors. 2. With increasing amounts of remnant cholesteryl ester the rate of uptake approached saturation and conformed to a linear double-reciprocal plot. The V(max.) was determined as 80ng of cholesteryl ester/h per mg of protein and the apparent K(m) as 1.4mug of cholesteryl ester per mg of protein. The time course for the uptake and hydrolysis suggested that binding of particles to the cell surface preceded the degradation. 3. Cholesteryl esters of native chylomicrons were degraded to a much smaller extent and their presence had only a small inhibitory effect on the degradation of chylomicron remnants. Intestinal very-low-density lipoproteins were degraded somewhat faster than chylomicrons, and caused more inhibition of remnant degradation. Rat high-density lipoproteins inhibited the hydrolysis of remnant cholesteryl ester by up to 50%, but had less influence on the amount of cholesteryl ester that was bound to the cells. Serum decreased both the uptake and hydrolysis, whereas d=1.21 infranatant had no effect. 4. The cholesteryl ester hydrolysis after the uptake by the cells was inhibited by chloroquine and by colchicine. Only 28-36% of the unhydrolysed cholesteryl ester could be released from these cells by trypsin treatment, indicating that the major portion was truly intracellular. The particles that could be released from the cell surface by trypsin and those remaining in the medium had the same triacylglycerol/cholesteryl ester ratio as the added remnant particles. Significant amounts of denser particles were thus not formed during contact with the cell surface. 5. The presence of heparin, as well as preincubation of the cells with heparin, increased the uptake of chylomicron remnants. This effect was most marked in the presence of serum. A much smaller proportion of the other serum lipoproteins was taken up, and this proportion was not increased by heparin.}},
  author       = {{Florén, Claes-Henrik and Nilsson, Åke}},
  issn         = {{0264-6021}},
  language     = {{eng}},
  month        = {{12}},
  number       = {{3}},
  pages        = {{483--494}},
  publisher    = {{Portland Press}},
  series       = {{The Biochemical journal}},
  title        = {{Binding, interiorization and degradation of cholesteryl ester labelled chylomicron remnant particles by rat hepatocyte monolayers}},
  url          = {{http://dx.doi.org/10.1042/bj1680483}},
  doi          = {{10.1042/bj1680483}},
  volume       = {{168}},
  year         = {{1977}},
}