Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Mapping magnetization transfer saturation (MTsat) in human brain at 7T : Protocol optimization under specific absorption rate constraints

Olsson, Hampus LU ; Andersen, Mads LU ; Wirestam, Ronnie LU orcid and Helms, Gunther LU orcid (2021) In Magnetic Resonance in Medicine
Abstract
Purpose:
To optimize a whole-brain magnetization transfer saturation (MTsat) protocol
at 7T, focusing on maximizing obtainable MTsat under the constraints of specific
absorption rate (SAR) and transmit field inhomogeneity, while avoiding bias and keeping scan time short.
Theory and Methods:
MTsat is a semi-quantitative metric, obtained by spoiled gradient-echo MRI in the imaging steady-state. Optimization was based on an established 7T dual flip angle protocol, and focused on MT pulse, readout flip angle, repetition time (TR), offset frequency (Δ), and correction of residual effects from transmit field inhomogeneities by separate flip angle mapping.
Results:
A 100% SAR level was reached at a 180° MT pulse... (More)
Purpose:
To optimize a whole-brain magnetization transfer saturation (MTsat) protocol
at 7T, focusing on maximizing obtainable MTsat under the constraints of specific
absorption rate (SAR) and transmit field inhomogeneity, while avoiding bias and keeping scan time short.
Theory and Methods:
MTsat is a semi-quantitative metric, obtained by spoiled gradient-echo MRI in the imaging steady-state. Optimization was based on an established 7T dual flip angle protocol, and focused on MT pulse, readout flip angle, repetition time (TR), offset frequency (Δ), and correction of residual effects from transmit field inhomogeneities by separate flip angle mapping.
Results:
A 100% SAR level was reached at a 180° MT pulse flip angle, using a compact sinc main lobe (4 ms duration) and minimum TR = 26.5 ms. The use of Δ = +2.0 kHz caused no discernible direct saturation, while Δ = −2.0 kHz resulted in 45% higher MTsat in white matter (WM) compared to Δ = +2.0 kHz. A 4° readout flip angle eliminated bias while yielding a good signal-to-noise ratio. Increased TR yielded only a little increase in MTsat, and TR = 26.5 ms (scan time 04:58 min) was thus selected. Post hoc transmit field correction clearly improved homogeneity, especially in WM.
Conclusions:
The range of MTsat is limited at 7T, and this can partly be overcome by the exploitation of the asymmetry of the macromolecular lineshape through the sign of Δ. To reduce scan time, a compact MT pulse with a sufficiently narrow frequency response should be used. TR and readout flip angle should be kept short/small. Transmit field correction through separate flip angle mapping is required. (Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Magnetic Resonance in Medicine
publisher
John Wiley & Sons Inc.
external identifiers
  • pmid:34196043
  • scopus:85108997990
ISSN
1522-2594
DOI
10.1002/mrm.28899
project
Gradient echo-based quantitative MRI of human brain at 7T
Multiparametric mapping of the brain at 7T using gradient echoes
language
English
LU publication?
yes
id
d6d5cb93-a5a2-4dbf-b3c5-b71579babb7f
date added to LUP
2021-07-09 14:45:55
date last changed
2022-04-27 02:47:28
@article{d6d5cb93-a5a2-4dbf-b3c5-b71579babb7f,
  abstract     = {{Purpose: <br/>To optimize a whole-brain magnetization transfer saturation (MTsat) protocol<br/>at 7T, focusing on maximizing obtainable MTsat under the constraints of specific<br/>absorption rate (SAR) and transmit field inhomogeneity, while avoiding bias and keeping scan time short.<br/>Theory and Methods: <br/>MTsat is a semi-quantitative metric, obtained by spoiled gradient-echo MRI in the imaging steady-state. Optimization was based on an established 7T dual flip angle protocol, and focused on MT pulse, readout flip angle, repetition time (TR), offset frequency (Δ), and correction of residual effects from transmit field inhomogeneities by separate flip angle mapping.<br/>Results: <br/>A 100% SAR level was reached at a 180° MT pulse flip angle, using a compact sinc main lobe (4 ms duration) and minimum TR = 26.5 ms. The use of Δ = +2.0 kHz caused no discernible direct saturation, while Δ = −2.0 kHz resulted in 45% higher MTsat in white matter (WM) compared to Δ = +2.0 kHz. A 4° readout flip angle eliminated bias while yielding a good signal-to-noise ratio. Increased TR yielded only a little increase in MTsat, and TR = 26.5 ms (scan time 04:58 min) was thus selected. Post hoc transmit field correction clearly improved homogeneity, especially in WM.<br/>Conclusions: <br/>The range of MTsat is limited at 7T, and this can partly be overcome by the exploitation of the asymmetry of the macromolecular lineshape through the sign of Δ. To reduce scan time, a compact MT pulse with a sufficiently narrow frequency response should be used. TR and readout flip angle should be kept short/small. Transmit field correction through separate flip angle mapping is required.}},
  author       = {{Olsson, Hampus and Andersen, Mads and Wirestam, Ronnie and Helms, Gunther}},
  issn         = {{1522-2594}},
  language     = {{eng}},
  month        = {{06}},
  publisher    = {{John Wiley & Sons Inc.}},
  series       = {{Magnetic Resonance in Medicine}},
  title        = {{Mapping magnetization transfer saturation (MTsat) in human brain at 7T : Protocol optimization under specific absorption rate constraints}},
  url          = {{http://dx.doi.org/10.1002/mrm.28899}},
  doi          = {{10.1002/mrm.28899}},
  year         = {{2021}},
}