Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Numerical study of heat transfer, flow fields, turbulent length scales, and anisotropy in corrugated heat exchanger channels

Karlsson, G. LU ; Fureby, C. LU ; Wang, L. LU ; Norberg, C. LU ; Holm, M. LU and Strömer, F. (2022) In Physics of Fluids 34(5).
Abstract

In this study, we report on large eddy simulation (LES) of convectively dominated heat transfer in a corrugated heat exchanger channel using the computational fluid dynamics toolbox, OpenFOAM. A chevron pattern domain with 63 contact points is used to represent the conditions in a real plate heat exchanger (PHE). The unsteady nature of the flow is elucidated using visualization techniques based on volume rendering of temperature and iso surfaces of vorticity defined using the λ2-criterion and contours of wall shear stress and wall heat flux to illustrate the heat transfer process. Global surface averaged temperature and pressure drop are extracted from the LES on successively finer grids, approaching direct numerical simulation... (More)

In this study, we report on large eddy simulation (LES) of convectively dominated heat transfer in a corrugated heat exchanger channel using the computational fluid dynamics toolbox, OpenFOAM. A chevron pattern domain with 63 contact points is used to represent the conditions in a real plate heat exchanger (PHE). The unsteady nature of the flow is elucidated using visualization techniques based on volume rendering of temperature and iso surfaces of vorticity defined using the λ2-criterion and contours of wall shear stress and wall heat flux to illustrate the heat transfer process. Global surface averaged temperature and pressure drop are extracted from the LES on successively finer grids, approaching direct numerical simulation resolution, to increase the understanding of grid resolution requirements for LES in PHEs. Industry standard Reynolds-averaged Navier-Stokes simulations are compared to the LES results along selected profiles to demonstrate similarities and differences between the two techniques. The differences detected are further investigated using anisotropy invariant mapping, energy spectra, and turbulence length scale distributions. Significant differences between the model classes are detected and detailed. Moreover, the LES resolution requirements for the flow and the heat transfer processes are found to be different with the latter being more severe.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Physics of Fluids
volume
34
issue
5
article number
055123
publisher
American Institute of Physics (AIP)
external identifiers
  • scopus:85130873275
ISSN
1070-6631
DOI
10.1063/5.0089839
language
English
LU publication?
yes
id
0695dc55-93c2-4a3d-9393-003458d7cd32
date added to LUP
2022-08-31 14:35:01
date last changed
2023-11-06 21:21:54
@article{0695dc55-93c2-4a3d-9393-003458d7cd32,
  abstract     = {{<p>In this study, we report on large eddy simulation (LES) of convectively dominated heat transfer in a corrugated heat exchanger channel using the computational fluid dynamics toolbox, OpenFOAM. A chevron pattern domain with 63 contact points is used to represent the conditions in a real plate heat exchanger (PHE). The unsteady nature of the flow is elucidated using visualization techniques based on volume rendering of temperature and iso surfaces of vorticity defined using the λ2-criterion and contours of wall shear stress and wall heat flux to illustrate the heat transfer process. Global surface averaged temperature and pressure drop are extracted from the LES on successively finer grids, approaching direct numerical simulation resolution, to increase the understanding of grid resolution requirements for LES in PHEs. Industry standard Reynolds-averaged Navier-Stokes simulations are compared to the LES results along selected profiles to demonstrate similarities and differences between the two techniques. The differences detected are further investigated using anisotropy invariant mapping, energy spectra, and turbulence length scale distributions. Significant differences between the model classes are detected and detailed. Moreover, the LES resolution requirements for the flow and the heat transfer processes are found to be different with the latter being more severe. </p>}},
  author       = {{Karlsson, G. and Fureby, C. and Wang, L. and Norberg, C. and Holm, M. and Strömer, F.}},
  issn         = {{1070-6631}},
  language     = {{eng}},
  month        = {{05}},
  number       = {{5}},
  publisher    = {{American Institute of Physics (AIP)}},
  series       = {{Physics of Fluids}},
  title        = {{Numerical study of heat transfer, flow fields, turbulent length scales, and anisotropy in corrugated heat exchanger channels}},
  url          = {{http://dx.doi.org/10.1063/5.0089839}},
  doi          = {{10.1063/5.0089839}},
  volume       = {{34}},
  year         = {{2022}},
}