Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

The pool of ADP and ATP regulates anaerobic product formation in resting cells of Lactococcus lactis

Palmfeldt, Johan LU ; Paese, Marco LU ; Hahn-Hägerdal, Bärbel LU and van Niel, Ed LU (2004) In Applied and Environmental Microbiology 70(9). p.5477-5484
Abstract
Lactococcus lactis grows homofermentatively on glucose, while its growth on maltose under anaerobic conditions results in mixed acid product formation in which formate, acetate, and ethanol are formed in addition to lactate. Maltose was used as a carbon source to study mixed acid product formation as a function of the growth rate. In batch and nitrogen-limited chemostat cultures mixed acid product formation was shown to be linked to the growth rate, and homolactic fermentation occurred only in resting cells. Two of the four lactococcal strains investigated with maltose, L. lactis 65.1 and MG1363, showed more pronounced mixed acid product formation during growth than L. lactis ATCC 19435 or IL-1403. In resting cell experiments all four... (More)
Lactococcus lactis grows homofermentatively on glucose, while its growth on maltose under anaerobic conditions results in mixed acid product formation in which formate, acetate, and ethanol are formed in addition to lactate. Maltose was used as a carbon source to study mixed acid product formation as a function of the growth rate. In batch and nitrogen-limited chemostat cultures mixed acid product formation was shown to be linked to the growth rate, and homolactic fermentation occurred only in resting cells. Two of the four lactococcal strains investigated with maltose, L. lactis 65.1 and MG1363, showed more pronounced mixed acid product formation during growth than L. lactis ATCC 19435 or IL-1403. In resting cell experiments all four strains exhibited homolactic fermentation. In resting cells the intracellular concentrations of ADP, ATP, and fructose 1,6-bisphosphate were increased and the concentration of P-i was decreased compared with the concentrations in growing cells. Addition of an ionophore (monensin or valinomycin) to resting cultures of L. lactis 65.1 induced mixed acid product formation concomitant with decreases in the ADP, ATP, and fructose 1,6-bisphosphate concentrations. ADP and ATP were shown to inhibit glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and alcohol dehydrogenase in vitro. Alcohol dehydrogenase was the most sensitive enzyme and was totally inhibited at an adenine nucleotide concentration of 16 mM, which is close to the sum of the intracellular concentrations of ADP and ATP of resting cells. This inhibition of alcohol dehydrogenase might be partially responsible for the homolactic behavior of resting cells. A hypothesis regarding the level of the ATP-ADP pool as a regulating mechanism for the glycolytic flux and product formation in L. lactis is discussed (Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Applied and Environmental Microbiology
volume
70
issue
9
pages
5477 - 5484
publisher
American Society for Microbiology
external identifiers
  • wos:000223901100054
  • pmid:15345435
  • scopus:4644301904
ISSN
0099-2240
DOI
10.1128/AEM.70.9.5477-5484.2004
language
English
LU publication?
yes
id
0d58cfc0-49a1-48fe-87af-dd10c3a9d3ac (old id 140463)
date added to LUP
2016-04-01 11:50:30
date last changed
2022-01-26 19:03:31
@article{0d58cfc0-49a1-48fe-87af-dd10c3a9d3ac,
  abstract     = {{Lactococcus lactis grows homofermentatively on glucose, while its growth on maltose under anaerobic conditions results in mixed acid product formation in which formate, acetate, and ethanol are formed in addition to lactate. Maltose was used as a carbon source to study mixed acid product formation as a function of the growth rate. In batch and nitrogen-limited chemostat cultures mixed acid product formation was shown to be linked to the growth rate, and homolactic fermentation occurred only in resting cells. Two of the four lactococcal strains investigated with maltose, L. lactis 65.1 and MG1363, showed more pronounced mixed acid product formation during growth than L. lactis ATCC 19435 or IL-1403. In resting cell experiments all four strains exhibited homolactic fermentation. In resting cells the intracellular concentrations of ADP, ATP, and fructose 1,6-bisphosphate were increased and the concentration of P-i was decreased compared with the concentrations in growing cells. Addition of an ionophore (monensin or valinomycin) to resting cultures of L. lactis 65.1 induced mixed acid product formation concomitant with decreases in the ADP, ATP, and fructose 1,6-bisphosphate concentrations. ADP and ATP were shown to inhibit glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and alcohol dehydrogenase in vitro. Alcohol dehydrogenase was the most sensitive enzyme and was totally inhibited at an adenine nucleotide concentration of 16 mM, which is close to the sum of the intracellular concentrations of ADP and ATP of resting cells. This inhibition of alcohol dehydrogenase might be partially responsible for the homolactic behavior of resting cells. A hypothesis regarding the level of the ATP-ADP pool as a regulating mechanism for the glycolytic flux and product formation in L. lactis is discussed}},
  author       = {{Palmfeldt, Johan and Paese, Marco and Hahn-Hägerdal, Bärbel and van Niel, Ed}},
  issn         = {{0099-2240}},
  language     = {{eng}},
  number       = {{9}},
  pages        = {{5477--5484}},
  publisher    = {{American Society for Microbiology}},
  series       = {{Applied and Environmental Microbiology}},
  title        = {{The pool of ADP and ATP regulates anaerobic product formation in resting cells of Lactococcus lactis}},
  url          = {{https://lup.lub.lu.se/search/files/2666344/624770.pdf}},
  doi          = {{10.1128/AEM.70.9.5477-5484.2004}},
  volume       = {{70}},
  year         = {{2004}},
}