Advanced

Origins and pathways of cerebrovascular nerves storing substance P and calcitonin gene-related peptide in rat

Suzuki, N; Hardebo, Jan Erik LU and Owman, Christer LU (1989) In Neuroscience 31(2). p.427-438
Abstract
Origins and pathways of cerebrovascular substance P- and calcitonin gene-related peptide-positive nerves in rat were studied by immunohistochemistry combined with denervation experiments and retrograde axonal tracer technique. The two peptides have been found to coexist in one and the same neuron. After sectioning of the nasociliary nerve bilaterally the substance P/calcitonin gene-related peptide fibers in the rostral half of the circle of Willis and its branches were eliminated, whereas the number decreased in the caudal half of the circle of Willis and rostral two thirds of the basilar artery. Substance P/calcitonin gene-related peptide fibers in the internal carotid arteries, the caudal third of the basilar artery and the vertebral... (More)
Origins and pathways of cerebrovascular substance P- and calcitonin gene-related peptide-positive nerves in rat were studied by immunohistochemistry combined with denervation experiments and retrograde axonal tracer technique. The two peptides have been found to coexist in one and the same neuron. After sectioning of the nasociliary nerve bilaterally the substance P/calcitonin gene-related peptide fibers in the rostral half of the circle of Willis and its branches were eliminated, whereas the number decreased in the caudal half of the circle of Willis and rostral two thirds of the basilar artery. Substance P/calcitonin gene-related peptide fibers in the internal carotid arteries, the caudal third of the basilar artery and the vertebral arteries were not affected by the nerve section. After application of the retrograde axonal tracer True Blue onto the proximal segment of the middle cerebral artery the dye accumulated in several Substance P/calcitonin gene-related peptide-containing cells in the ophthalmic division of the ipsilateral trigeminal ganglion and in a few cells in the maxillary trigeminal division and in the internal carotid miniganglion. No other cranial ganglia accumulating the dye contained any substance P/calcitonin gene-related peptide-positive cells. It is concluded that the rostral portion and part of the caudal portion of the cerebral vessels are innervated by substance P/calcitonin gene-related peptide-containing fibers from the trigeminal ganglion and the internal carotid miniganglion. The great majority of trigeminal fibers reach the vessels via the nasociliary nerve of the ophthalmic division, which enters the cranial cavity through the ethmoidal foramen, whereas fibers from the miniganglion project directly to the bypassing internal carotid artery. A probable pathway for the fibers from the maxillary division is suggested. The caudal portion receives, in addition, a supply from other sensory ganglia (lower cranial and/or upper cervical dorsal root ganglia). (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Neuroscience
volume
31
issue
2
pages
427 - 438
publisher
Elsevier
external identifiers
  • pmid:2477770
  • scopus:0024414985
ISSN
1873-7544
DOI
10.1016/0306-4522(89)90385-0
language
English
LU publication?
yes
id
0b7936a8-6dbc-47f1-a6c9-3c91bfb6d6f2 (old id 1104938)
date added to LUP
2008-08-06 16:21:58
date last changed
2017-08-13 03:44:57
@article{0b7936a8-6dbc-47f1-a6c9-3c91bfb6d6f2,
  abstract     = {Origins and pathways of cerebrovascular substance P- and calcitonin gene-related peptide-positive nerves in rat were studied by immunohistochemistry combined with denervation experiments and retrograde axonal tracer technique. The two peptides have been found to coexist in one and the same neuron. After sectioning of the nasociliary nerve bilaterally the substance P/calcitonin gene-related peptide fibers in the rostral half of the circle of Willis and its branches were eliminated, whereas the number decreased in the caudal half of the circle of Willis and rostral two thirds of the basilar artery. Substance P/calcitonin gene-related peptide fibers in the internal carotid arteries, the caudal third of the basilar artery and the vertebral arteries were not affected by the nerve section. After application of the retrograde axonal tracer True Blue onto the proximal segment of the middle cerebral artery the dye accumulated in several Substance P/calcitonin gene-related peptide-containing cells in the ophthalmic division of the ipsilateral trigeminal ganglion and in a few cells in the maxillary trigeminal division and in the internal carotid miniganglion. No other cranial ganglia accumulating the dye contained any substance P/calcitonin gene-related peptide-positive cells. It is concluded that the rostral portion and part of the caudal portion of the cerebral vessels are innervated by substance P/calcitonin gene-related peptide-containing fibers from the trigeminal ganglion and the internal carotid miniganglion. The great majority of trigeminal fibers reach the vessels via the nasociliary nerve of the ophthalmic division, which enters the cranial cavity through the ethmoidal foramen, whereas fibers from the miniganglion project directly to the bypassing internal carotid artery. A probable pathway for the fibers from the maxillary division is suggested. The caudal portion receives, in addition, a supply from other sensory ganglia (lower cranial and/or upper cervical dorsal root ganglia).},
  author       = {Suzuki, N and Hardebo, Jan Erik and Owman, Christer},
  issn         = {1873-7544},
  language     = {eng},
  number       = {2},
  pages        = {427--438},
  publisher    = {Elsevier},
  series       = {Neuroscience},
  title        = {Origins and pathways of cerebrovascular nerves storing substance P and calcitonin gene-related peptide in rat},
  url          = {http://dx.doi.org/10.1016/0306-4522(89)90385-0},
  volume       = {31},
  year         = {1989},
}