Advanced

Effect of flush-perfusion on vascular endothelial and smooth muscle function

Ingemansson, Richard LU ; Budrikis, Algimantas; Bolys, Ramunas; Sjöberg, Trygve LU and Steen, Stig LU (1997) In Annals of Thoracic Surgery 64(4). p.1075-1081
Abstract
BACKGROUND: The aim of this study was to investigate how much perfusion pressure an artery can tolerate without significant loss of endothelium-dependent relaxation (EDR) and vascular contractility. METHODS: The abdominal aortas of 396 Sprague-Dawley rats were used. One hundred twenty aortas were flush-perfused for 1 or 5 minutes with cold St. Thomas' Hospital cardioplegic (STHC) solution or with the same solution but modified by the addition of 3.5% dextran 40. Three perfusion pressures were tested: 50, 100, and 150 mm Hg. Two hundred eighty vessels were subjected to pressures of 50, 150, or 300 mm Hg using saline or STHC solution at 22 degrees C or STHC solution at 4 degrees C, for 10 or 60 seconds. The vessels were investigated in organ... (More)
BACKGROUND: The aim of this study was to investigate how much perfusion pressure an artery can tolerate without significant loss of endothelium-dependent relaxation (EDR) and vascular contractility. METHODS: The abdominal aortas of 396 Sprague-Dawley rats were used. One hundred twenty aortas were flush-perfused for 1 or 5 minutes with cold St. Thomas' Hospital cardioplegic (STHC) solution or with the same solution but modified by the addition of 3.5% dextran 40. Three perfusion pressures were tested: 50, 100, and 150 mm Hg. Two hundred eighty vessels were subjected to pressures of 50, 150, or 300 mm Hg using saline or STHC solution at 22 degrees C or STHC solution at 4 degrees C, for 10 or 60 seconds. The vessels were investigated in organ baths. Contractility was tested with the thromboxane analogue U-46619, acetylcholine was used to investigate EDR, and papaverine to elicit endothelium-independent relaxation. RESULTS: Flush-perfusion with cold STHC solution for 5 minutes at a perfusion pressure of 50 or 100 mm Hg affected neither contractility nor EDR. Vessels exposed to a flush-perfusion pressure of 150 mm Hg for 1 or 5 minutes lost 39% (p < 0.001) and 53% (p < 0.001) of their contractility, respectively. Flush-perfusion at 150 mm Hg for 1 minute did not affect EDR, whereas 5 minutes' perfusion caused a reduction of 7% (p < 0.05). A repetition of these experiments using STHC solution with 3.5% dextran 40 added gave no significantly different results. The impairment in contractility and EDR seen after perfusion at 150 mm Hg for 5 minutes disappeared after transplantation and reperfusion for 7 days. The vessels could be distended with saline or STHC solution at a pressure of 150 mm Hg without affecting contractility at 22 degrees C. At 4 degrees C, however, this pressure was harmful to contractility. Distention at a pressure of 300 mm Hg almost abolished contractility and 7 days after transplantation there had not yet been any recovery of contractility, but 30 days after transplantation the grafts had regained their normal contractility. CONCLUSIONS: Cold STHC solution, with or without dextran 40, can be used with a perfusion pressure of 100 but not 150 mm Hg without impairing EDR or vascular smooth muscle function. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Annals of Thoracic Surgery
volume
64
issue
4
pages
1075 - 1081
publisher
Elsevier
external identifiers
  • pmid:9354531
  • scopus:0030669484
ISSN
1552-6259
language
English
LU publication?
yes
id
78fb5278-3686-4b09-bbb9-d68557ded165 (old id 1112373)
alternative location
http://ats.ctsnetjournals.org/cgi/content/full/64/4/1075
date added to LUP
2008-07-22 10:21:08
date last changed
2017-01-01 04:25:51
@article{78fb5278-3686-4b09-bbb9-d68557ded165,
  abstract     = {BACKGROUND: The aim of this study was to investigate how much perfusion pressure an artery can tolerate without significant loss of endothelium-dependent relaxation (EDR) and vascular contractility. METHODS: The abdominal aortas of 396 Sprague-Dawley rats were used. One hundred twenty aortas were flush-perfused for 1 or 5 minutes with cold St. Thomas' Hospital cardioplegic (STHC) solution or with the same solution but modified by the addition of 3.5% dextran 40. Three perfusion pressures were tested: 50, 100, and 150 mm Hg. Two hundred eighty vessels were subjected to pressures of 50, 150, or 300 mm Hg using saline or STHC solution at 22 degrees C or STHC solution at 4 degrees C, for 10 or 60 seconds. The vessels were investigated in organ baths. Contractility was tested with the thromboxane analogue U-46619, acetylcholine was used to investigate EDR, and papaverine to elicit endothelium-independent relaxation. RESULTS: Flush-perfusion with cold STHC solution for 5 minutes at a perfusion pressure of 50 or 100 mm Hg affected neither contractility nor EDR. Vessels exposed to a flush-perfusion pressure of 150 mm Hg for 1 or 5 minutes lost 39% (p &lt; 0.001) and 53% (p &lt; 0.001) of their contractility, respectively. Flush-perfusion at 150 mm Hg for 1 minute did not affect EDR, whereas 5 minutes' perfusion caused a reduction of 7% (p &lt; 0.05). A repetition of these experiments using STHC solution with 3.5% dextran 40 added gave no significantly different results. The impairment in contractility and EDR seen after perfusion at 150 mm Hg for 5 minutes disappeared after transplantation and reperfusion for 7 days. The vessels could be distended with saline or STHC solution at a pressure of 150 mm Hg without affecting contractility at 22 degrees C. At 4 degrees C, however, this pressure was harmful to contractility. Distention at a pressure of 300 mm Hg almost abolished contractility and 7 days after transplantation there had not yet been any recovery of contractility, but 30 days after transplantation the grafts had regained their normal contractility. CONCLUSIONS: Cold STHC solution, with or without dextran 40, can be used with a perfusion pressure of 100 but not 150 mm Hg without impairing EDR or vascular smooth muscle function.},
  author       = {Ingemansson, Richard and Budrikis, Algimantas and Bolys, Ramunas and Sjöberg, Trygve and Steen, Stig},
  issn         = {1552-6259},
  language     = {eng},
  number       = {4},
  pages        = {1075--1081},
  publisher    = {Elsevier},
  series       = {Annals of Thoracic Surgery},
  title        = {Effect of flush-perfusion on vascular endothelial and smooth muscle function},
  volume       = {64},
  year         = {1997},
}