Advanced

Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products

Rippe, Bengt LU ; Simonsen, Ole LU ; Heimburger, O; Christensson, Anders LU ; Haraldsson, B; Stelin, G; Weiss, L; Nielsen, F D; Bro, S and Friedberg, M, et al. (2001) In Kidney International 59(1). p.348-357
Abstract
BACKGROUND: Glucose degradation products (GDPs) are cytotoxic in vitro and potentially toxic in vivo during peritoneal dialysis (PD). We are presenting the results of a two-year randomized clinical trial of a new PD fluid, produced in a two-compartment bag and designed to minimize heat-induced glucose degradation while producing a near neutral pH. The effects of the new fluid over two years of treatment on membrane transport characteristics, ultrafiltration (UF) capacity, and effluent markers of peritoneal membrane integrity were investigated and compared with those obtained during treatment with a standard solution. DESIGN: A two-group parallel design with 80 continuous ambulatory peritoneal dialysis patients was used. The patients were... (More)
BACKGROUND: Glucose degradation products (GDPs) are cytotoxic in vitro and potentially toxic in vivo during peritoneal dialysis (PD). We are presenting the results of a two-year randomized clinical trial of a new PD fluid, produced in a two-compartment bag and designed to minimize heat-induced glucose degradation while producing a near neutral pH. The effects of the new fluid over two years of treatment on membrane transport characteristics, ultrafiltration (UF) capacity, and effluent markers of peritoneal membrane integrity were investigated and compared with those obtained during treatment with a standard solution. DESIGN: A two-group parallel design with 80 continuous ambulatory peritoneal dialysis patients was used. The patients were randomly assigned to either the new fluid (N = 40) or to a conventional one (N = 40), and were stratified with respect to age, diabetes, and time on PD. Peritoneal transport characteristics were assessed by the Personal Dialysis Capacity (PDCtrade mark) test at 1, 6, 12, 18, and 24 months after inclusion and by weighing the overnight bag daily. Infusion pain and handling were evaluated using a questionnaire. Peritoneal mesothelial and interstitial integrity were evaluated by analyzing overnight effluent dialysate concentrations of CA 125, hyaluronan (HA), procollagen-1-C-terminal peptide (PICP), and procollagen-3-N-terminal peptide (PIIINP) at 1, 6, 12, 18, and 24 months. RESULTS: The handling of the new two-compartment bag was considered easy, and there were no indications of increased discomfort with the new system. Furthermore, no changes in peritoneal fluid or solute transport characteristics were observed during the study period for either fluid, and neither were there any differences with regard to peritonitis incidence. However, significantly higher dialysate CA 125 (73 +/- 41 vs. 25 +/- 18 U/mL), PICP (387 +/- 163 vs. 244 +/- 81 ng/mL), and PIIINP (50 +/- 24 vs. 29 +/- 13 ng/mL) and significantly lower concentrations of HA (395 +/- 185 vs. 530 +/- 298 ng/mL) were observed in the overnight effluent during treatment with the new fluid. CONCLUSIONS: We conclude that the new fluid with a higher pH and less GDPs is safe and easy to use and has no negative effects on either the frequency of peritonitis or peritoneal transport characteristics as compared with conventional ones. Our results indicate that the new solution causes less mesothelial and interstitial damage than conventional ones; that is, it may be considered more biocompatible than a number of conventional PD solutions currently in use. (Less)
Please use this url to cite or link to this publication:
author
, et al. (More)
(Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Kidney International
volume
59
issue
1
pages
348 - 357
publisher
Nature Publishing Group
external identifiers
  • pmid:11135090
  • scopus:0035162741
ISSN
1523-1755
DOI
language
English
LU publication?
yes
id
c51257a2-2671-4d01-8d5b-5ea2a2085b46 (old id 1119847)
date added to LUP
2008-07-11 14:18:02
date last changed
2018-05-29 09:35:18
@article{c51257a2-2671-4d01-8d5b-5ea2a2085b46,
  abstract     = {BACKGROUND: Glucose degradation products (GDPs) are cytotoxic in vitro and potentially toxic in vivo during peritoneal dialysis (PD). We are presenting the results of a two-year randomized clinical trial of a new PD fluid, produced in a two-compartment bag and designed to minimize heat-induced glucose degradation while producing a near neutral pH. The effects of the new fluid over two years of treatment on membrane transport characteristics, ultrafiltration (UF) capacity, and effluent markers of peritoneal membrane integrity were investigated and compared with those obtained during treatment with a standard solution. DESIGN: A two-group parallel design with 80 continuous ambulatory peritoneal dialysis patients was used. The patients were randomly assigned to either the new fluid (N = 40) or to a conventional one (N = 40), and were stratified with respect to age, diabetes, and time on PD. Peritoneal transport characteristics were assessed by the Personal Dialysis Capacity (PDCtrade mark) test at 1, 6, 12, 18, and 24 months after inclusion and by weighing the overnight bag daily. Infusion pain and handling were evaluated using a questionnaire. Peritoneal mesothelial and interstitial integrity were evaluated by analyzing overnight effluent dialysate concentrations of CA 125, hyaluronan (HA), procollagen-1-C-terminal peptide (PICP), and procollagen-3-N-terminal peptide (PIIINP) at 1, 6, 12, 18, and 24 months. RESULTS: The handling of the new two-compartment bag was considered easy, and there were no indications of increased discomfort with the new system. Furthermore, no changes in peritoneal fluid or solute transport characteristics were observed during the study period for either fluid, and neither were there any differences with regard to peritonitis incidence. However, significantly higher dialysate CA 125 (73 +/- 41 vs. 25 +/- 18 U/mL), PICP (387 +/- 163 vs. 244 +/- 81 ng/mL), and PIIINP (50 +/- 24 vs. 29 +/- 13 ng/mL) and significantly lower concentrations of HA (395 +/- 185 vs. 530 +/- 298 ng/mL) were observed in the overnight effluent during treatment with the new fluid. CONCLUSIONS: We conclude that the new fluid with a higher pH and less GDPs is safe and easy to use and has no negative effects on either the frequency of peritonitis or peritoneal transport characteristics as compared with conventional ones. Our results indicate that the new solution causes less mesothelial and interstitial damage than conventional ones; that is, it may be considered more biocompatible than a number of conventional PD solutions currently in use.},
  author       = {Rippe, Bengt and Simonsen, Ole and Heimburger, O and Christensson, Anders and Haraldsson, B and Stelin, G and Weiss, L and Nielsen, F D and Bro, S and Friedberg, M and Wieslander, A},
  issn         = {1523-1755},
  language     = {eng},
  number       = {1},
  pages        = {348--357},
  publisher    = {Nature Publishing Group},
  series       = {Kidney International},
  title        = {Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products},
  url          = {http://dx.doi.org/},
  volume       = {59},
  year         = {2001},
}