Thermoseparating water/polymer system: A novel one-polymer aqueous two-phase system for protein purification
(1999) In Biotechnology and Bioengineering 66(4). p.247-257- Abstract
- In this study we show that proteins can be partitioned and separated in a novel aqueous two-phase system composed of only one polymer in water solution. This system represents an attractive alternative to traditional two-phase systems which uses either two polymers (e.g., PEG/dextran) or one polymer in high-salt concentration (e.g., PEG/salt). The polymer in the new system is a linear random copolymer composed of ethylene oxide and propylene oxide groups which has been hydrophobically modified with myristyl groups (C14H29) at both ends (HM-EOPO). This polymer thermoseparates in water, with a cloud point at 14degreesC. The HM-EOPO polymer forms an aqueous two-phase system with a top phase composed of almost 100% water and a bottom phase... (More)
- In this study we show that proteins can be partitioned and separated in a novel aqueous two-phase system composed of only one polymer in water solution. This system represents an attractive alternative to traditional two-phase systems which uses either two polymers (e.g., PEG/dextran) or one polymer in high-salt concentration (e.g., PEG/salt). The polymer in the new system is a linear random copolymer composed of ethylene oxide and propylene oxide groups which has been hydrophobically modified with myristyl groups (C14H29) at both ends (HM-EOPO). This polymer thermoseparates in water, with a cloud point at 14degreesC. The HM-EOPO polymer forms an aqueous two-phase system with a top phase composed of almost 100% water and a bottom phase composed of 5-9% HM-EOPO in water when separated at 17-30degreesC. The copolymer is self-associating and forms micellar-like structures with a CMC at 12 µM (0.01%). The partitioning behavior of three proteins (lysozyme, bovine serum albumin, and apolipoprotein A-1) in water/HM-EOPO two-phase systems has been studied, as well as the effect of various ions, pH, and temperature on protein partitioning. The amphiphilic protein apolipoprotein A-1 was strongly partitioned to the HM-EOPO-rich phase within a broad-temperature range. The partitioning of hydrophobic proteins can be directed with addition of salt. Below the isoelectric point (pI) BSA was partitioned to the HM-EOPO-rich phase and above the pI to the water phase when NaClO4was added to the system. Lysozyme was directed to the HM-EOPO phase with NaClO4, and to the water phase with Na-phosphate. The possibility to direct protein partitioning between water and copolymer phases shows that this system can be used for protein separations. This was tested on purification of apolipoprotein A-1 from human plasma and Escherichia coli extract. Apolipoprotein A-1 could be recovered in the HM-EOPO-rich phase and the majority of contaminating proteins in the water phase. By adding a new water/buffer phase at higher pH and with 100 mM NaClO4, and raising the temperature for separation, the apolipoprotein A-1 could be back-extracted from the HM-EOPO phase into the new water phase. This novel system has a strong potential for use in biotechnical extractions as it uses only one polymer and can be operated at moderate temperatures and salt concentrations and furthermore, the copolymer can be recovered. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 66: 247-257, 1999. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/125341
- author
- Johansson, Hans-Olof LU ; Persson, Josefine and Tjerneld, Folke LU
- organization
- publishing date
- 1999
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- aqueous two-phase systems, thermoseparating polymers, polymer recycling, protein purification
- in
- Biotechnology and Bioengineering
- volume
- 66
- issue
- 4
- pages
- 247 - 257
- publisher
- John Wiley & Sons Inc.
- external identifiers
-
- scopus:0033396212
- ISSN
- 1097-0290
- language
- English
- LU publication?
- yes
- id
- a423bc4f-f991-4ea9-b0b7-15abf18baeb9 (old id 125341)
- alternative location
- http://www3.interscience.wiley.com/cgi-bin/abstract/71003618/ABSTRACT
- http://www3.interscience.wiley.com/cgi-bin/fulltext/71003618/PDFSTART
- date added to LUP
- 2016-04-01 12:32:15
- date last changed
- 2022-02-11 08:20:36
@article{a423bc4f-f991-4ea9-b0b7-15abf18baeb9, abstract = {{In this study we show that proteins can be partitioned and separated in a novel aqueous two-phase system composed of only one polymer in water solution. This system represents an attractive alternative to traditional two-phase systems which uses either two polymers (e.g., PEG/dextran) or one polymer in high-salt concentration (e.g., PEG/salt). The polymer in the new system is a linear random copolymer composed of ethylene oxide and propylene oxide groups which has been hydrophobically modified with myristyl groups (C14H29) at both ends (HM-EOPO). This polymer thermoseparates in water, with a cloud point at 14degreesC. The HM-EOPO polymer forms an aqueous two-phase system with a top phase composed of almost 100% water and a bottom phase composed of 5-9% HM-EOPO in water when separated at 17-30degreesC. The copolymer is self-associating and forms micellar-like structures with a CMC at 12 µM (0.01%). The partitioning behavior of three proteins (lysozyme, bovine serum albumin, and apolipoprotein A-1) in water/HM-EOPO two-phase systems has been studied, as well as the effect of various ions, pH, and temperature on protein partitioning. The amphiphilic protein apolipoprotein A-1 was strongly partitioned to the HM-EOPO-rich phase within a broad-temperature range. The partitioning of hydrophobic proteins can be directed with addition of salt. Below the isoelectric point (pI) BSA was partitioned to the HM-EOPO-rich phase and above the pI to the water phase when NaClO4was added to the system. Lysozyme was directed to the HM-EOPO phase with NaClO4, and to the water phase with Na-phosphate. The possibility to direct protein partitioning between water and copolymer phases shows that this system can be used for protein separations. This was tested on purification of apolipoprotein A-1 from human plasma and Escherichia coli extract. Apolipoprotein A-1 could be recovered in the HM-EOPO-rich phase and the majority of contaminating proteins in the water phase. By adding a new water/buffer phase at higher pH and with 100 mM NaClO4, and raising the temperature for separation, the apolipoprotein A-1 could be back-extracted from the HM-EOPO phase into the new water phase. This novel system has a strong potential for use in biotechnical extractions as it uses only one polymer and can be operated at moderate temperatures and salt concentrations and furthermore, the copolymer can be recovered. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 66: 247-257, 1999.}}, author = {{Johansson, Hans-Olof and Persson, Josefine and Tjerneld, Folke}}, issn = {{1097-0290}}, keywords = {{aqueous two-phase systems; thermoseparating polymers; polymer recycling; protein purification}}, language = {{eng}}, number = {{4}}, pages = {{247--257}}, publisher = {{John Wiley & Sons Inc.}}, series = {{Biotechnology and Bioengineering}}, title = {{Thermoseparating water/polymer system: A novel one-polymer aqueous two-phase system for protein purification}}, url = {{http://www3.interscience.wiley.com/cgi-bin/abstract/71003618/ABSTRACT}}, volume = {{66}}, year = {{1999}}, }