Advanced

Bismuth-stabilized (2x1) and (2x4) reconstructions on GaAs(100) surfaces: Combined first-principles, photoemission, and scanning tunneling microscopy study

Punkkinen, M. P. J.; Laukkanen, P.; Komsa, H. -P.; Ahola-Tuomi, M.; Rasanen, N.; Kokko, K.; Kuzmin, M.; Adell, Johan LU ; Sadowski, Janusz LU and Perala, R. E., et al. (2008) In Physical Review B (Condensed Matter and Materials Physics) 78(19).
Abstract
Bismuth adsorbate-stabilized (2x1) and (2x4) reconstructions of the GaAs(100) surfaces have been studied by first-principles calculations, valence-band and core-level photoelectron spectroscopies, and scanning tunneling microscopy. It is demonstrated that large Bi atom size leads to the formation of the pseudogap at the Fermi energy and to the lower energy of an adsorbate-derived surface band, which contributes to the stabilization of the exceptional Bi/GaAs(100)(2x1) reconstruction. It is proposed that the Bi/GaAs(100)(2x4) reconstructions include asymmetric mixed Bi-As dimers, in addition to the Bi-Bi dimers. Based on the calculations, we solve the atomic origins of the surface core-level shifts (SCLSs) of the Bi 5d photoemission spectra... (More)
Bismuth adsorbate-stabilized (2x1) and (2x4) reconstructions of the GaAs(100) surfaces have been studied by first-principles calculations, valence-band and core-level photoelectron spectroscopies, and scanning tunneling microscopy. It is demonstrated that large Bi atom size leads to the formation of the pseudogap at the Fermi energy and to the lower energy of an adsorbate-derived surface band, which contributes to the stabilization of the exceptional Bi/GaAs(100)(2x1) reconstruction. It is proposed that the Bi/GaAs(100)(2x4) reconstructions include asymmetric mixed Bi-As dimers, in addition to the Bi-Bi dimers. Based on the calculations, we solve the atomic origins of the surface core-level shifts (SCLSs) of the Bi 5d photoemission spectra from the Bi/GaAs(100)(2x4) surfaces. This allows for resolving the puzzle related to the identification of two SCLS components often found in the measurements of the Bi 5d and Sb 4d core-level emissions of the Bi/III-V and Sb/III-V(100)(2x4) surfaces. Finally, the reason for the absence of the common (2x4)-beta 2 structure and additional support for the stability of the (2x1) structure on the Bi/III-V(100) surfaces are discussed in terms of Bi atom size and subsurface stress. (Less)
Please use this url to cite or link to this publication:
author
, et al. (More)
(Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
surface reconstruction, scanning tunnelling microscopy, spectra, photoelectron, III-V semiconductors, gallium arsenide, Fermi level, gap, energy, core levels, bismuth, ab initio calculations, adsorbed layers, valence bands
in
Physical Review B (Condensed Matter and Materials Physics)
volume
78
issue
19
publisher
American Physical Society
external identifiers
  • wos:000262607800063
  • scopus:56349135503
ISSN
1098-0121
DOI
10.1103/PhysRevB.78.195304
language
English
LU publication?
yes
id
ee7c217f-930a-4984-85a9-f2846a3a9329 (old id 1375987)
date added to LUP
2009-04-24 13:50:40
date last changed
2017-03-26 03:51:03
@article{ee7c217f-930a-4984-85a9-f2846a3a9329,
  abstract     = {Bismuth adsorbate-stabilized (2x1) and (2x4) reconstructions of the GaAs(100) surfaces have been studied by first-principles calculations, valence-band and core-level photoelectron spectroscopies, and scanning tunneling microscopy. It is demonstrated that large Bi atom size leads to the formation of the pseudogap at the Fermi energy and to the lower energy of an adsorbate-derived surface band, which contributes to the stabilization of the exceptional Bi/GaAs(100)(2x1) reconstruction. It is proposed that the Bi/GaAs(100)(2x4) reconstructions include asymmetric mixed Bi-As dimers, in addition to the Bi-Bi dimers. Based on the calculations, we solve the atomic origins of the surface core-level shifts (SCLSs) of the Bi 5d photoemission spectra from the Bi/GaAs(100)(2x4) surfaces. This allows for resolving the puzzle related to the identification of two SCLS components often found in the measurements of the Bi 5d and Sb 4d core-level emissions of the Bi/III-V and Sb/III-V(100)(2x4) surfaces. Finally, the reason for the absence of the common (2x4)-beta 2 structure and additional support for the stability of the (2x1) structure on the Bi/III-V(100) surfaces are discussed in terms of Bi atom size and subsurface stress.},
  articleno    = {195304},
  author       = {Punkkinen, M. P. J. and Laukkanen, P. and Komsa, H. -P. and Ahola-Tuomi, M. and Rasanen, N. and Kokko, K. and Kuzmin, M. and Adell, Johan and Sadowski, Janusz and Perala, R. E. and Ropo, M. and Rantala, T. T. and Vayrynen, I. J. and Pessa, M. and Vitos, L. and Kollar, J. and Mirbt, S. and Johansson, B.},
  issn         = {1098-0121},
  keyword      = {surface reconstruction,scanning tunnelling microscopy,spectra,photoelectron,III-V semiconductors,gallium arsenide,Fermi level,gap,energy,core levels,bismuth,ab initio calculations,adsorbed layers,valence bands},
  language     = {eng},
  number       = {19},
  publisher    = {American Physical Society},
  series       = {Physical Review B (Condensed Matter and Materials Physics)},
  title        = {Bismuth-stabilized (2x1) and (2x4) reconstructions on GaAs(100) surfaces: Combined first-principles, photoemission, and scanning tunneling microscopy study},
  url          = {http://dx.doi.org/10.1103/PhysRevB.78.195304},
  volume       = {78},
  year         = {2008},
}