Advanced

Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) fr.

Le Quéré, Antoine LU ; Wright, Derek LU ; Söderström, Bengt LU ; Tunlid, Anders LU and Johansson, Tomas LU (2005) In Molecular Plant-Microbe Interactions 18(7). p.659-673
Abstract
The formation of ectomycorrhizal (ECM) root tissue is characterized by distinct morphological and developmental stages, such as preinfection and adhesion, mantle, and Hartig net formation. The global pattern of gene expression during these stages in the birch (Betula pendula)-Paxillus involutus ECM association was analyzed using cDNA microarrays. In comparison with nonsymbiotic conditions, 251 fungal (from a total of 1,075) and 138 plant (1,074 in total) genes were found to be differentially regulated during the ECM development. For instance, during mantle and Hartig net development, there were several plant genes upregulated that are normally involved in defense responses during pathogenic fungal challenges. These responses were, at later... (More)
The formation of ectomycorrhizal (ECM) root tissue is characterized by distinct morphological and developmental stages, such as preinfection and adhesion, mantle, and Hartig net formation. The global pattern of gene expression during these stages in the birch (Betula pendula)-Paxillus involutus ECM association was analyzed using cDNA microarrays. In comparison with nonsymbiotic conditions, 251 fungal (from a total of 1,075) and 138 plant (1,074 in total) genes were found to be differentially regulated during the ECM development. For instance, during mantle and Hartig net development, there were several plant genes upregulated that are normally involved in defense responses during pathogenic fungal challenges. These responses were, at later stages of ECM development, found to be repressed. Other birch genes that showed differential regulation involved several homologs that usually are implicated in water permeability (aquaporins) and water stress tolerance (dehydrins). Among fungal genes differentially upregulated during stages of mantle and Hartig net formation were homologs putatively involved in mitochondrial respiration. In fully developed ECM tissue, there was an upregulation of fungal genes related to protein synthesis and the cytoskeleton assembly machinery. This study highlights complex molecular interactions between two symbionts during the development of an ECM association. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Molecular Plant-Microbe Interactions
volume
18
issue
7
pages
659 - 673
publisher
American Physical Society
external identifiers
  • wos:000229900900007
  • pmid:16042012
  • scopus:20644444348
ISSN
0894-0282
DOI
10.1094/MPMI-18-0659
language
English
LU publication?
yes
id
b179fd1c-20a0-4b6d-af7b-a1c2aa200c82 (old id 146790)
date added to LUP
2007-06-29 12:07:16
date last changed
2017-10-29 03:43:49
@article{b179fd1c-20a0-4b6d-af7b-a1c2aa200c82,
  abstract     = {The formation of ectomycorrhizal (ECM) root tissue is characterized by distinct morphological and developmental stages, such as preinfection and adhesion, mantle, and Hartig net formation. The global pattern of gene expression during these stages in the birch (Betula pendula)-Paxillus involutus ECM association was analyzed using cDNA microarrays. In comparison with nonsymbiotic conditions, 251 fungal (from a total of 1,075) and 138 plant (1,074 in total) genes were found to be differentially regulated during the ECM development. For instance, during mantle and Hartig net development, there were several plant genes upregulated that are normally involved in defense responses during pathogenic fungal challenges. These responses were, at later stages of ECM development, found to be repressed. Other birch genes that showed differential regulation involved several homologs that usually are implicated in water permeability (aquaporins) and water stress tolerance (dehydrins). Among fungal genes differentially upregulated during stages of mantle and Hartig net formation were homologs putatively involved in mitochondrial respiration. In fully developed ECM tissue, there was an upregulation of fungal genes related to protein synthesis and the cytoskeleton assembly machinery. This study highlights complex molecular interactions between two symbionts during the development of an ECM association.},
  author       = {Le Quéré, Antoine and Wright, Derek and Söderström, Bengt and Tunlid, Anders and Johansson, Tomas},
  issn         = {0894-0282},
  language     = {eng},
  number       = {7},
  pages        = {659--673},
  publisher    = {American Physical Society},
  series       = {Molecular Plant-Microbe Interactions},
  title        = {Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) fr.},
  url          = {http://dx.doi.org/10.1094/MPMI-18-0659},
  volume       = {18},
  year         = {2005},
}