Advanced

Climate change and the effect of temperature backlashes causing frost damage in Picea abies

Jönsson, Anna Maria LU ; Linderson, Maj-Lena LU ; Stjernquist, Ingrid LU ; Schlyter, P and Bärring, Lars LU (2004) In Global and Planetary Change 44(1-4). p.195-207
Abstract
In boreal and nemoboreal forests, tree frost hardiness is modified in reaction to cues from day length and temperature. The dehardening processes in Norway spruce, Picea abies, could be estimated to start when the daily mean temperature is above 5 degreesC for 5 days. Bud burst will occur approximately after 120-170 degree-days above 5 degreesC. dependent on genetic differences among provenances. A reduced cold hardiness level during autumn and spring and an advanced onset of bud burst are expected impacts of projected future global wart-ning. The aim of this study was to test if this will increase the risk for frost damage caused by temperature backlashes. This was tested for Sweden by comparing output from the Hadley Centre regional... (More)
In boreal and nemoboreal forests, tree frost hardiness is modified in reaction to cues from day length and temperature. The dehardening processes in Norway spruce, Picea abies, could be estimated to start when the daily mean temperature is above 5 degreesC for 5 days. Bud burst will occur approximately after 120-170 degree-days above 5 degreesC. dependent on genetic differences among provenances. A reduced cold hardiness level during autumn and spring and an advanced onset of bud burst are expected impacts of projected future global wart-ning. The aim of this study was to test if this will increase the risk for frost damage caused by temperature backlashes. This was tested for Sweden by comparing output from the Hadley Centre regional climate model, HadRM3H, for the period 1961-1990 with future IPCC scenario SRES A2 and B2 for 2070-2099. Different indices for calculating the susceptibility to frost damage were used to assess changes in frost damage risk. The indices were based on: (1) the start of dehardening; (2) the severity of the temperature backlash: (3) the timing of bud burst: and (4) the cold hardiness level. The start of dehardening and bud burst were calculated to occur earlier all over the country. which is in line with the overall warming in both climate change scenarios. The frequency of temperature backlashes that may cause frost damage was calculated to increase in the southern part, an effect that became gradually less pronounced towards the north. The different timing of the onset of dehardening mainly caused this systematic latitudinal pattern. In the south, it occurs early in the year when the seasonal temperature progression is slow and large temperature variations occur. In the north, dehardening will occur closer to the spring equinox when the temperature progression is faster. (C) 2004 Elsevier B.V. All rights reserved. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Global and Planetary Change
volume
44
issue
1-4
pages
195 - 207
publisher
Elsevier
external identifiers
  • wos:000226062500013
  • scopus:9944259952
ISSN
1872-6364
DOI
10.1016/j.gloplacha.2004.06.012
language
English
LU publication?
yes
id
d2765757-7166-4df4-b91f-e33ee6b608ca (old id 147129)
date added to LUP
2007-07-02 11:13:05
date last changed
2017-11-12 03:30:44
@article{d2765757-7166-4df4-b91f-e33ee6b608ca,
  abstract     = {In boreal and nemoboreal forests, tree frost hardiness is modified in reaction to cues from day length and temperature. The dehardening processes in Norway spruce, Picea abies, could be estimated to start when the daily mean temperature is above 5 degreesC for 5 days. Bud burst will occur approximately after 120-170 degree-days above 5 degreesC. dependent on genetic differences among provenances. A reduced cold hardiness level during autumn and spring and an advanced onset of bud burst are expected impacts of projected future global wart-ning. The aim of this study was to test if this will increase the risk for frost damage caused by temperature backlashes. This was tested for Sweden by comparing output from the Hadley Centre regional climate model, HadRM3H, for the period 1961-1990 with future IPCC scenario SRES A2 and B2 for 2070-2099. Different indices for calculating the susceptibility to frost damage were used to assess changes in frost damage risk. The indices were based on: (1) the start of dehardening; (2) the severity of the temperature backlash: (3) the timing of bud burst: and (4) the cold hardiness level. The start of dehardening and bud burst were calculated to occur earlier all over the country. which is in line with the overall warming in both climate change scenarios. The frequency of temperature backlashes that may cause frost damage was calculated to increase in the southern part, an effect that became gradually less pronounced towards the north. The different timing of the onset of dehardening mainly caused this systematic latitudinal pattern. In the south, it occurs early in the year when the seasonal temperature progression is slow and large temperature variations occur. In the north, dehardening will occur closer to the spring equinox when the temperature progression is faster. (C) 2004 Elsevier B.V. All rights reserved.},
  author       = {Jönsson, Anna Maria and Linderson, Maj-Lena and Stjernquist, Ingrid and Schlyter, P and Bärring, Lars},
  issn         = {1872-6364},
  language     = {eng},
  number       = {1-4},
  pages        = {195--207},
  publisher    = {Elsevier},
  series       = {Global and Planetary Change},
  title        = {Climate change and the effect of temperature backlashes causing frost damage in Picea abies},
  url          = {http://dx.doi.org/10.1016/j.gloplacha.2004.06.012},
  volume       = {44},
  year         = {2004},
}