Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

On the Structure of Solid Lipid Nanoparticles

Pink, Demi L. ; Loruthai, Orathai ; Ziolek, Robert M. ; Wasutrasawat, Prawarisa ; Terry, Ann E. LU ; Lawrence, M. Jayne and Lorenz, Christian D. LU orcid (2019) In Small
Abstract

Solid lipid nanoparticles (SLNs) have a crystalline lipid core which is stabilized by interfacial surfactants. SLNs are considered favorable candidates for drug delivery vehicles since their ability to store and release organic molecules can be tailored through the identity of the lipids and surfactants used. When stored, polymorphic transitions in the core of drug-loaded SLNs lead to the premature release of drug molecules. Significant experimental studies have been conducted with the aim of investigating the physicochemical properties of SLNs, however, no molecular scale investigations have been reported on the behaviors that drive SLN formation and their polymorphic transitions. A combination of small angle neutron scattering and... (More)

Solid lipid nanoparticles (SLNs) have a crystalline lipid core which is stabilized by interfacial surfactants. SLNs are considered favorable candidates for drug delivery vehicles since their ability to store and release organic molecules can be tailored through the identity of the lipids and surfactants used. When stored, polymorphic transitions in the core of drug-loaded SLNs lead to the premature release of drug molecules. Significant experimental studies have been conducted with the aim of investigating the physicochemical properties of SLNs, however, no molecular scale investigations have been reported on the behaviors that drive SLN formation and their polymorphic transitions. A combination of small angle neutron scattering and all-atom molecular dynamics simulations is therefore used to yield a detailed atomistic description of the internal structure of an SLN comprising triglyceride, tripalmitin, and the nonionic surfactant, Brij O10 (C18:1E10). The molecular scale mechanisms by which the surfactants stabilize the crystalline structure of the SLN lipid core are uncovered. By comparing these results to simulated liquid and solid aggregates of tripalmitin lipids, how the morphology of the lipids vary between these systems is demonstrated providing further insight into the mechanisms that control drug encapsulation and release from SLNs.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Brij O10, molecular dynamics simulations, small angle neutron scattering, solid lipid nanoparticles, tripalmitin
in
Small
article number
1903156
publisher
John Wiley & Sons Inc.
external identifiers
  • pmid:31532892
  • scopus:85073998469
ISSN
1613-6810
DOI
10.1002/smll.201903156
language
English
LU publication?
yes
id
17c44668-6299-40bc-b078-bcf166f25f76
date added to LUP
2019-11-07 14:27:00
date last changed
2024-06-26 05:58:17
@article{17c44668-6299-40bc-b078-bcf166f25f76,
  abstract     = {{<p>Solid lipid nanoparticles (SLNs) have a crystalline lipid core which is stabilized by interfacial surfactants. SLNs are considered favorable candidates for drug delivery vehicles since their ability to store and release organic molecules can be tailored through the identity of the lipids and surfactants used. When stored, polymorphic transitions in the core of drug-loaded SLNs lead to the premature release of drug molecules. Significant experimental studies have been conducted with the aim of investigating the physicochemical properties of SLNs, however, no molecular scale investigations have been reported on the behaviors that drive SLN formation and their polymorphic transitions. A combination of small angle neutron scattering and all-atom molecular dynamics simulations is therefore used to yield a detailed atomistic description of the internal structure of an SLN comprising triglyceride, tripalmitin, and the nonionic surfactant, Brij O10 (C<sub>18:1</sub>E<sub>10</sub>). The molecular scale mechanisms by which the surfactants stabilize the crystalline structure of the SLN lipid core are uncovered. By comparing these results to simulated liquid and solid aggregates of tripalmitin lipids, how the morphology of the lipids vary between these systems is demonstrated providing further insight into the mechanisms that control drug encapsulation and release from SLNs.</p>}},
  author       = {{Pink, Demi L. and Loruthai, Orathai and Ziolek, Robert M. and Wasutrasawat, Prawarisa and Terry, Ann E. and Lawrence, M. Jayne and Lorenz, Christian D.}},
  issn         = {{1613-6810}},
  keywords     = {{Brij O10; molecular dynamics simulations; small angle neutron scattering; solid lipid nanoparticles; tripalmitin}},
  language     = {{eng}},
  publisher    = {{John Wiley & Sons Inc.}},
  series       = {{Small}},
  title        = {{On the Structure of Solid Lipid Nanoparticles}},
  url          = {{http://dx.doi.org/10.1002/smll.201903156}},
  doi          = {{10.1002/smll.201903156}},
  year         = {{2019}},
}