Advanced

Uncertainty and Risk Analysis in Fire Safety Engineering

Frantzich, Håkan LU (1998) In Report / Department of Fire Safety Engineering, Lund Institute of Technology, Lund University 1016.
Abstract (Swedish)
Popular Abstract in Swedish

Två riskanalysmetoder presenteras med vilka risken för personskador till följd av brand kan uppskattas. Metoderna, standard QRA (Quantitative Risk Analysis) och utökad QRA skiljer sig åt varigenom osäkerheter i ingående variabler behandlas. Osäkerheter ingår i princip i alla variabler och måste behandlas på något rationellt sätt. Standard QRA-metoden förutsätter att en separat osäkerhetsanalys genomförs som ett komplement för att belysa inverkan av osäkerheter i riskbedömningen. I den utökade QRA-metoden ingår osäkerhetsanalysen som en integrerad del. Båda metoderna är applicerade på ett beräkningsfall där personsäkerheten på en vårdavdelning på ett sjukhus studerats.



... (More)
Popular Abstract in Swedish

Två riskanalysmetoder presenteras med vilka risken för personskador till följd av brand kan uppskattas. Metoderna, standard QRA (Quantitative Risk Analysis) och utökad QRA skiljer sig åt varigenom osäkerheter i ingående variabler behandlas. Osäkerheter ingår i princip i alla variabler och måste behandlas på något rationellt sätt. Standard QRA-metoden förutsätter att en separat osäkerhetsanalys genomförs som ett komplement för att belysa inverkan av osäkerheter i riskbedömningen. I den utökade QRA-metoden ingår osäkerhetsanalysen som en integrerad del. Båda metoderna är applicerade på ett beräkningsfall där personsäkerheten på en vårdavdelning på ett sjukhus studerats.



Avhandlingen beskriver också några metoder för att genomföra osäkerhetsanalyser. De metoder som behandlas är metoden med säkerhetsindex ß samt två numeriska samplingsmetoder.



Dessutom presenteras en metod med vilken dimensionerande värden för utrymningsberäkningar kan tas fram. Dessa dimensionerande värden tas fram givet att den resulterande risken för personskador har kvantifierats. (Less)
Abstract
Two Quantitative Risk Analysis (QRA) methods are presented which can be used to quantify the risk to occupants in, for example, a building in which a fire has broken out. The extended QRA considers the inherent uncertainty in the variables explicitly. The standard QRA does not consider the uncertainties in the variables and must be complemented by a sensitivity analysis or an uncertainty analysis. Both methods provide risk measures, such as individual risk and FN curves. In the extended QRA these are presented in terms of statistical distributions. The standard QRA is more simple to perform and has been used extensively in many engineering fields. Both QRA methods have been applied to an example, structured with the event tree technique,... (More)
Two Quantitative Risk Analysis (QRA) methods are presented which can be used to quantify the risk to occupants in, for example, a building in which a fire has broken out. The extended QRA considers the inherent uncertainty in the variables explicitly. The standard QRA does not consider the uncertainties in the variables and must be complemented by a sensitivity analysis or an uncertainty analysis. Both methods provide risk measures, such as individual risk and FN curves. In the extended QRA these are presented in terms of statistical distributions. The standard QRA is more simple to perform and has been used extensively in many engineering fields. Both QRA methods have been applied to an example, structured with the event tree technique, to determine the risk to patients on a hospital ward.



In addition to the two risk analysis methods, separate uncertainty analysis methods are also presented. Both stochastic uncertainty and knowledge uncertainty are considered in the analysis, separately and combined. The importance of the variables is also investigated.



As both QRA methods are rather complex to use, a more simple method using design values in deterministic equations would be preferable for fire safety design purposes. A method of deriving these design values, based on quantified risk, is presented and complemented with an example which provides design values for a class of buildings. When these design values are known, so-called partial coefficients can be derived. (Less)
Please use this url to cite or link to this publication:
author
opponent
  • Prof. Shields, T. J., University of Ulster, Northern Ireland
organization
publishing date
type
Thesis
publication status
published
subject
keywords
event tree, fire engineering design, reliability index, FOSM, Monte Carlo simulation, Risk analysis, uncertainty analysis, response surface., Technological sciences, Teknik
in
Report / Department of Fire Safety Engineering, Lund Institute of Technology, Lund University
volume
1016
pages
206 pages
publisher
Department of Fire Safety Engineering and Systems Safety, Lund University
defense location
John Ericssons väg 1, Lund, lecture room A
defense date
1998-03-06 10:15
external identifiers
  • other:ISRN: LUTVDG/TVBB-1016-SE
ISSN
1102-8246
language
English
LU publication?
yes
id
d8f93ed9-b589-4688-9577-449b34aed1ae (old id 18715)
date added to LUP
2007-05-24 12:16:02
date last changed
2016-09-19 08:44:53
@phdthesis{d8f93ed9-b589-4688-9577-449b34aed1ae,
  abstract     = {Two Quantitative Risk Analysis (QRA) methods are presented which can be used to quantify the risk to occupants in, for example, a building in which a fire has broken out. The extended QRA considers the inherent uncertainty in the variables explicitly. The standard QRA does not consider the uncertainties in the variables and must be complemented by a sensitivity analysis or an uncertainty analysis. Both methods provide risk measures, such as individual risk and FN curves. In the extended QRA these are presented in terms of statistical distributions. The standard QRA is more simple to perform and has been used extensively in many engineering fields. Both QRA methods have been applied to an example, structured with the event tree technique, to determine the risk to patients on a hospital ward.<br/><br>
<br/><br>
In addition to the two risk analysis methods, separate uncertainty analysis methods are also presented. Both stochastic uncertainty and knowledge uncertainty are considered in the analysis, separately and combined. The importance of the variables is also investigated.<br/><br>
<br/><br>
As both QRA methods are rather complex to use, a more simple method using design values in deterministic equations would be preferable for fire safety design purposes. A method of deriving these design values, based on quantified risk, is presented and complemented with an example which provides design values for a class of buildings. When these design values are known, so-called partial coefficients can be derived.},
  author       = {Frantzich, Håkan},
  issn         = {1102-8246},
  keyword      = {event tree,fire engineering design,reliability index,FOSM,Monte Carlo simulation,Risk analysis,uncertainty analysis,response surface.,Technological sciences,Teknik},
  language     = {eng},
  pages        = {206},
  publisher    = {Department of Fire Safety Engineering and Systems Safety, Lund University},
  school       = {Lund University},
  series       = {Report / Department of Fire Safety Engineering, Lund Institute of Technology, Lund University},
  title        = {Uncertainty and Risk Analysis in Fire Safety Engineering},
  volume       = {1016},
  year         = {1998},
}