Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

New Results on Combinatorial Algorithms

Dessmark, Anders LU (1998)
Abstract
In this thesis improved upper bounds for several important combinatorial problems are provided. Below is a list of the main results showed in the thesis. The problem of determining whether a <i>k</i>-connected partial <i>k</i>-tree is isomorphic to subgraph of another partial <i>k</i>-tree is shown to be solvable in time <i>O(n<sup>k+2</sup>)</i>. The problem of determining the maximum number of node-disjoint subgraphs of a partial <i>k</i>-tree <i>H</i> on <i>n<sub>H</sub></i> nodes that are isomorphic to a <i>k</i>-connected partial <i>k</i>-tree <i>G</i> on... (More)
In this thesis improved upper bounds for several important combinatorial problems are provided. Below is a list of the main results showed in the thesis. The problem of determining whether a <i>k</i>-connected partial <i>k</i>-tree is isomorphic to subgraph of another partial <i>k</i>-tree is shown to be solvable in time <i>O(n<sup>k+2</sup>)</i>. The problem of determining the maximum number of node-disjoint subgraphs of a partial <i>k</i>-tree <i>H</i> on <i>n<sub>H</sub></i> nodes that are isomorphic to a <i>k</i>-connected partial <i>k</i>-tree <i>G</i> on <i>n<sub>G</sub></i> nodes is shown to be solvable in time <i>O(n<sub>G</sub><sup>k+1</sup>n<sub>H</sub> + n<sub>H</sub><sup>k</sup>)</i>. The maximum two-dimensional pattern matching problem is proved to admit an <i>O(n</i> log <i>n)</i> time approximation algorithm with relative error <i>O(1/(</i>log log <i>n)<sup>1/2</sup>)</i> for constant size patterns. Also, a fast efficient parallel approximation scheme for the problem is given. Efficient sequential and parallel algorithms are presented for the maximum <i>k</i>-dependent and <i>f</i>-dependent set problem in trees, partial <i>k</i>-trees, cographs and splitgraphs. The problem is shown to be NP-complete for planar bipartite graphs when <i>k > 1</i>. A combinatorial generalization of the convex layer problem, termed <i>multi-list layering</i> is shown to be P-complete. Fast efficient parallel algorithms for multi-list layering when the number of lists or the layer size is bounded by a constant are given. We show that <i>n</i> integers of size <i>n<sup>O(1)</sup></i> can be sorted in time <i>O(</i>log<i><sup>3/2</sup> n)</i> on an EREW PRAM with <i>n/</i>log <i>n</i> processors, improving the previous best work bound from <i>O(n (</i>log <i>n</i> log log <i>n)<sup>1/2</sup>)</i> to <i>O(n (</i>log <i>n)<sup>1/2</sup>)</i>. Efficient algorithms for constructing minimum broadcasting schemes for several types of weakly cyclic graphs and a polynomial-time algorithm for constructing a minimum broadcasting scheme for a partial <i>k</i>-tree of bounded degree are presented. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Prof. Seese, Detlef, Karlsruhe
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Sorting, Subgraph isomorphism, Partial k-trees, computer technology, Time complexity, Parallel computation, Data- och systemvetenskap, Convex layers, Systems engineering, Broadcasting
pages
118 pages
publisher
Department of Computer Science, Lund University
defense location
E:1406, building E, Lund Institute of Technology
defense date
1998-09-16 10:15:00
external identifiers
  • other:ISRN: LUNFD6/(NFCS-1013)/1-118/(1998)
language
English
LU publication?
yes
id
5883b0c3-173a-4e8e-b785-7807f4e858c9 (old id 18928)
date added to LUP
2016-04-04 10:49:08
date last changed
2018-11-21 21:00:57
@phdthesis{5883b0c3-173a-4e8e-b785-7807f4e858c9,
  abstract     = {{In this thesis improved upper bounds for several important combinatorial problems are provided. Below is a list of the main results showed in the thesis. The problem of determining whether a &lt;i&gt;k&lt;/i&gt;-connected partial &lt;i&gt;k&lt;/i&gt;-tree is isomorphic to subgraph of another partial &lt;i&gt;k&lt;/i&gt;-tree is shown to be solvable in time &lt;i&gt;O(n&lt;sup&gt;k+2&lt;/sup&gt;)&lt;/i&gt;. The problem of determining the maximum number of node-disjoint subgraphs of a partial &lt;i&gt;k&lt;/i&gt;-tree &lt;i&gt;H&lt;/i&gt; on &lt;i&gt;n&lt;sub&gt;H&lt;/sub&gt;&lt;/i&gt; nodes that are isomorphic to a &lt;i&gt;k&lt;/i&gt;-connected partial &lt;i&gt;k&lt;/i&gt;-tree &lt;i&gt;G&lt;/i&gt; on &lt;i&gt;n&lt;sub&gt;G&lt;/sub&gt;&lt;/i&gt; nodes is shown to be solvable in time &lt;i&gt;O(n&lt;sub&gt;G&lt;/sub&gt;&lt;sup&gt;k+1&lt;/sup&gt;n&lt;sub&gt;H&lt;/sub&gt; + n&lt;sub&gt;H&lt;/sub&gt;&lt;sup&gt;k&lt;/sup&gt;)&lt;/i&gt;. The maximum two-dimensional pattern matching problem is proved to admit an &lt;i&gt;O(n&lt;/i&gt; log &lt;i&gt;n)&lt;/i&gt; time approximation algorithm with relative error &lt;i&gt;O(1/(&lt;/i&gt;log log &lt;i&gt;n)&lt;sup&gt;1/2&lt;/sup&gt;)&lt;/i&gt; for constant size patterns. Also, a fast efficient parallel approximation scheme for the problem is given. Efficient sequential and parallel algorithms are presented for the maximum &lt;i&gt;k&lt;/i&gt;-dependent and &lt;i&gt;f&lt;/i&gt;-dependent set problem in trees, partial &lt;i&gt;k&lt;/i&gt;-trees, cographs and splitgraphs. The problem is shown to be NP-complete for planar bipartite graphs when &lt;i&gt;k &gt; 1&lt;/i&gt;. A combinatorial generalization of the convex layer problem, termed &lt;i&gt;multi-list layering&lt;/i&gt; is shown to be P-complete. Fast efficient parallel algorithms for multi-list layering when the number of lists or the layer size is bounded by a constant are given. We show that &lt;i&gt;n&lt;/i&gt; integers of size &lt;i&gt;n&lt;sup&gt;O(1)&lt;/sup&gt;&lt;/i&gt; can be sorted in time &lt;i&gt;O(&lt;/i&gt;log&lt;i&gt;&lt;sup&gt;3/2&lt;/sup&gt; n)&lt;/i&gt; on an EREW PRAM with &lt;i&gt;n/&lt;/i&gt;log &lt;i&gt;n&lt;/i&gt; processors, improving the previous best work bound from &lt;i&gt;O(n (&lt;/i&gt;log &lt;i&gt;n&lt;/i&gt; log log &lt;i&gt;n)&lt;sup&gt;1/2&lt;/sup&gt;)&lt;/i&gt; to &lt;i&gt;O(n (&lt;/i&gt;log &lt;i&gt;n)&lt;sup&gt;1/2&lt;/sup&gt;)&lt;/i&gt;. Efficient algorithms for constructing minimum broadcasting schemes for several types of weakly cyclic graphs and a polynomial-time algorithm for constructing a minimum broadcasting scheme for a partial &lt;i&gt;k&lt;/i&gt;-tree of bounded degree are presented.}},
  author       = {{Dessmark, Anders}},
  keywords     = {{Sorting; Subgraph isomorphism; Partial k-trees; computer technology; Time complexity; Parallel computation; Data- och systemvetenskap; Convex layers; Systems engineering; Broadcasting}},
  language     = {{eng}},
  publisher    = {{Department of Computer Science, Lund University}},
  school       = {{Lund University}},
  title        = {{New Results on Combinatorial Algorithms}},
  year         = {{1998}},
}