Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Shining new light into soil systems : Spectroscopy in microfluidic soil chips reveals microbial biogeochemistry

Pucetaite, Milda LU ; Ohlsson, Pelle LU orcid ; Persson, Per LU and Hammer, Edith LU (2021) In Soil Biology and Biochemistry 153.
Abstract

Microfluidic soil chips render optical access to the naturally opaque soil systems and enable direct investigation of microbial growth and interactions in micro-structurally and chemically controlled environments. However, chemical analyses of these interactions at high spatial and temporal resolution are still lacking. Here we propose that the use of advanced microspectroscopy techniques, namely infrared absorption, Raman scattering and synchrotron radiation based X-ray microspectroscopy, in microfluidic soil chips would make it possible to approach these phenomena. They allow monitoring biogeochemical processes in and around soil microbial cells growing in the reproducibly designed microenvironments within the chips at (sub)micrometer... (More)

Microfluidic soil chips render optical access to the naturally opaque soil systems and enable direct investigation of microbial growth and interactions in micro-structurally and chemically controlled environments. However, chemical analyses of these interactions at high spatial and temporal resolution are still lacking. Here we propose that the use of advanced microspectroscopy techniques, namely infrared absorption, Raman scattering and synchrotron radiation based X-ray microspectroscopy, in microfluidic soil chips would make it possible to approach these phenomena. They allow monitoring biogeochemical processes in and around soil microbial cells growing in the reproducibly designed microenvironments within the chips at (sub)micrometer scale. Complementary use of several of the microspectroscopy techniques is beneficial for obtaining information about both molecular and elemental composition, oxidation states and local structure of the elements in the sample. Ultimately, we argue that microspectroscopy in microfluidic chips can lead to relevant breakthroughs in frontier research areas in soil science, such as (1) analysis of chemical responses of microbes to environmental triggers at micro-scale spatial resolution, (2) phenotypical identification and phylogenetic classification of single cells of soil microbes in situ, (3) determining spatially and time resolved effects of heavy metals and organic pollutants, including microplastics, on soils and (4) spatially resolved analysis of soil organic matter dynamics for better understanding of soil carbon storage. Tailoring the chip design to achieve optical transparency to the radiation type used by the different microspectroscopy methods is crucial to achieve this; therefore, we expect that this perspective will inspire the scientific community to use the proposed approaches and thus push both the technical development of the microspectroscopy suitable soil chips and the research frontier in soil science.

(Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Microbial biogeochemistry, Microbial interactions, Microfluidics, Soil chip, Vibrational microspectroscopy, X-ray microspectroscopy
in
Soil Biology and Biochemistry
volume
153
article number
108078
publisher
Elsevier
external identifiers
  • scopus:85096882721
ISSN
0038-0717
DOI
10.1016/j.soilbio.2020.108078
project
How do microbes “tuck away” carbon? The role of microbes in physical soil organic carbon stabilization
language
English
LU publication?
yes
id
1978b4c4-1117-4086-a9c0-8e8cd3ae38a1
date added to LUP
2020-12-09 13:18:40
date last changed
2024-05-16 22:55:59
@article{1978b4c4-1117-4086-a9c0-8e8cd3ae38a1,
  abstract     = {{<p>Microfluidic soil chips render optical access to the naturally opaque soil systems and enable direct investigation of microbial growth and interactions in micro-structurally and chemically controlled environments. However, chemical analyses of these interactions at high spatial and temporal resolution are still lacking. Here we propose that the use of advanced microspectroscopy techniques, namely infrared absorption, Raman scattering and synchrotron radiation based X-ray microspectroscopy, in microfluidic soil chips would make it possible to approach these phenomena. They allow monitoring biogeochemical processes in and around soil microbial cells growing in the reproducibly designed microenvironments within the chips at (sub)micrometer scale. Complementary use of several of the microspectroscopy techniques is beneficial for obtaining information about both molecular and elemental composition, oxidation states and local structure of the elements in the sample. Ultimately, we argue that microspectroscopy in microfluidic chips can lead to relevant breakthroughs in frontier research areas in soil science, such as (1) analysis of chemical responses of microbes to environmental triggers at micro-scale spatial resolution, (2) phenotypical identification and phylogenetic classification of single cells of soil microbes in situ, (3) determining spatially and time resolved effects of heavy metals and organic pollutants, including microplastics, on soils and (4) spatially resolved analysis of soil organic matter dynamics for better understanding of soil carbon storage. Tailoring the chip design to achieve optical transparency to the radiation type used by the different microspectroscopy methods is crucial to achieve this; therefore, we expect that this perspective will inspire the scientific community to use the proposed approaches and thus push both the technical development of the microspectroscopy suitable soil chips and the research frontier in soil science.</p>}},
  author       = {{Pucetaite, Milda and Ohlsson, Pelle and Persson, Per and Hammer, Edith}},
  issn         = {{0038-0717}},
  keywords     = {{Microbial biogeochemistry; Microbial interactions; Microfluidics; Soil chip; Vibrational microspectroscopy; X-ray microspectroscopy}},
  language     = {{eng}},
  publisher    = {{Elsevier}},
  series       = {{Soil Biology and Biochemistry}},
  title        = {{Shining new light into soil systems : Spectroscopy in microfluidic soil chips reveals microbial biogeochemistry}},
  url          = {{http://dx.doi.org/10.1016/j.soilbio.2020.108078}},
  doi          = {{10.1016/j.soilbio.2020.108078}},
  volume       = {{153}},
  year         = {{2021}},
}