Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Efficient Wideband mmW Transceiver Front End for 5G Base Stations in 22-nm FD-SOI CMOS

Elgaard, Christian LU ; Ozen, Mustafa ; Westesson, Eric ; Mahmoud, Ahmed LU ; Torres, Florent ; Reyaz, Shakila Bint ; Forsberg, Therese LU ; Akbar, Rehman ; Hagberg, Hans and Sjoland, Henrik LU orcid (2023) In IEEE Journal of Solid-State Circuits p.1-16
Abstract

This article presents a fully integrated millimeter-wave (mmW) transceiver front end covering 24.25&#x2013;29.5 GHz. It features a wideband Doherty power amplifier utilizing adaptive bias and a transmit/receive switch (TRX-switch) that has embedded low noise amplifier to antenna matching. The phase shift of 90<inline-formula> <tex-math notation="LaTeX">$^\circ$</tex-math> </inline-formula> to the Doherty auxiliary amplifier is achieved using a separate IQ-mixer with rearranged phases in the auxiliary path, ensuring a wideband 90<inline-formula> <tex-math notation="LaTeX">$^\circ$</tex-math> </inline-formula> phase shift, and avoiding 3-dB loss from radio frequency (RF) input power... (More)

This article presents a fully integrated millimeter-wave (mmW) transceiver front end covering 24.25&#x2013;29.5 GHz. It features a wideband Doherty power amplifier utilizing adaptive bias and a transmit/receive switch (TRX-switch) that has embedded low noise amplifier to antenna matching. The phase shift of 90<inline-formula> <tex-math notation="LaTeX">$^\circ$</tex-math> </inline-formula> to the Doherty auxiliary amplifier is achieved using a separate IQ-mixer with rearranged phases in the auxiliary path, ensuring a wideband 90<inline-formula> <tex-math notation="LaTeX">$^\circ$</tex-math> </inline-formula> phase shift, and avoiding 3-dB loss from radio frequency (RF) input power splitting. Special emphasis is on the analysis of adaptive bias, the Doherty output combiner network, the decoupling capacitors, and the TRX-switch. Including TRX-switch losses of 1.1 dB in transmit mode, the transmitter reaches a saturated output power of 18.3 dBm with a 1-dB output compression point of 15.9 dBm. Stimulated with a 400-MHz 16-QAM orthogonal frequency-division multiplexing (OFDM) IQ-signal at baseband, without digital IQ-compensation and predistortion, the transmitter delivers a 26.5-GHz modulated signal with an output power (<inline-formula> <tex-math notation="LaTeX">$P_{\rm out}$</tex-math> </inline-formula>) of 12.8 dBm and an error vector magnitude (EVM) of <inline-formula> <tex-math notation="LaTeX">$-$</tex-math> </inline-formula>20.2 dB. The complete transmitter, including quadrature local oscillator drivers, then achieves a power added efficiency (PAE) of 5.8%. For a 1600-MHz wide 64-QAM OFDM signal, <inline-formula> <tex-math notation="LaTeX">$P_{\rm out}$</tex-math> </inline-formula> is 9.0 dBm, with an EVM <inline-formula> <tex-math notation="LaTeX">$=$</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">$-$</tex-math> </inline-formula>23.3 dB and a complete transmitter PAE of 3.2%. In receive mode including TRX-switch, at 27.25 GHz, the noise figure is below 4 dB with a gain of 23 dB and a third-order input-referred intercept point of <inline-formula> <tex-math notation="LaTeX">$-$</tex-math> </inline-formula>9 dBm. The active part of the die, manufactured in 22-nm fully depleted silicon on insulator (FD-SOI) CMOS, occupies 2.3 mm<inline-formula> <tex-math notation="LaTeX">$^2$</tex-math> </inline-formula>.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
epub
subject
keywords
5G mobile communication, Adaptive bias, Array signal processing, decoupling, Doherty power amplifier, Gain, image rejection (IR), local oscillator (LO)-leakage, low noise amplifier (LNA), millimeter-wave (mmW), mixer, Power amplifiers, Power generation, transceiver (TRX), Transceivers, transmit/receive switch (TRX-switch), Wideband
in
IEEE Journal of Solid-State Circuits
pages
16 pages
publisher
IEEE - Institute of Electrical and Electronics Engineers Inc.
external identifiers
  • scopus:85162653154
ISSN
0018-9200
DOI
10.1109/JSSC.2023.3282696
language
English
LU publication?
yes
id
1c4ebc06-6f3c-4afd-9244-c76db3e09e83
date added to LUP
2023-10-23 12:51:33
date last changed
2024-04-05 00:27:57
@article{1c4ebc06-6f3c-4afd-9244-c76db3e09e83,
  abstract     = {{<p>This article presents a fully integrated millimeter-wave (mmW) transceiver front end covering 24.25&amp;#x2013;29.5 GHz. It features a wideband Doherty power amplifier utilizing adaptive bias and a transmit/receive switch (TRX-switch) that has embedded low noise amplifier to antenna matching. The phase shift of 90&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$^\circ$&lt;/tex-math&gt; &lt;/inline-formula&gt; to the Doherty auxiliary amplifier is achieved using a separate IQ-mixer with rearranged phases in the auxiliary path, ensuring a wideband 90&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$^\circ$&lt;/tex-math&gt; &lt;/inline-formula&gt; phase shift, and avoiding 3-dB loss from radio frequency (RF) input power splitting. Special emphasis is on the analysis of adaptive bias, the Doherty output combiner network, the decoupling capacitors, and the TRX-switch. Including TRX-switch losses of 1.1 dB in transmit mode, the transmitter reaches a saturated output power of 18.3 dBm with a 1-dB output compression point of 15.9 dBm. Stimulated with a 400-MHz 16-QAM orthogonal frequency-division multiplexing (OFDM) IQ-signal at baseband, without digital IQ-compensation and predistortion, the transmitter delivers a 26.5-GHz modulated signal with an output power (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$P_{\rm out}$&lt;/tex-math&gt; &lt;/inline-formula&gt;) of 12.8 dBm and an error vector magnitude (EVM) of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$-$&lt;/tex-math&gt; &lt;/inline-formula&gt;20.2 dB. The complete transmitter, including quadrature local oscillator drivers, then achieves a power added efficiency (PAE) of 5.8%. For a 1600-MHz wide 64-QAM OFDM signal, &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$P_{\rm out}$&lt;/tex-math&gt; &lt;/inline-formula&gt; is 9.0 dBm, with an EVM &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$=$&lt;/tex-math&gt; &lt;/inline-formula&gt; &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$-$&lt;/tex-math&gt; &lt;/inline-formula&gt;23.3 dB and a complete transmitter PAE of 3.2%. In receive mode including TRX-switch, at 27.25 GHz, the noise figure is below 4 dB with a gain of 23 dB and a third-order input-referred intercept point of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$-$&lt;/tex-math&gt; &lt;/inline-formula&gt;9 dBm. The active part of the die, manufactured in 22-nm fully depleted silicon on insulator (FD-SOI) CMOS, occupies 2.3 mm&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$^2$&lt;/tex-math&gt; &lt;/inline-formula&gt;.</p>}},
  author       = {{Elgaard, Christian and Ozen, Mustafa and Westesson, Eric and Mahmoud, Ahmed and Torres, Florent and Reyaz, Shakila Bint and Forsberg, Therese and Akbar, Rehman and Hagberg, Hans and Sjoland, Henrik}},
  issn         = {{0018-9200}},
  keywords     = {{5G mobile communication; Adaptive bias; Array signal processing; decoupling; Doherty power amplifier; Gain; image rejection (IR); local oscillator (LO)-leakage; low noise amplifier (LNA); millimeter-wave (mmW); mixer; Power amplifiers; Power generation; transceiver (TRX); Transceivers; transmit/receive switch (TRX-switch); Wideband}},
  language     = {{eng}},
  pages        = {{1--16}},
  publisher    = {{IEEE - Institute of Electrical and Electronics Engineers Inc.}},
  series       = {{IEEE Journal of Solid-State Circuits}},
  title        = {{Efficient Wideband mmW Transceiver Front End for 5G Base Stations in 22-nm FD-SOI CMOS}},
  url          = {{http://dx.doi.org/10.1109/JSSC.2023.3282696}},
  doi          = {{10.1109/JSSC.2023.3282696}},
  year         = {{2023}},
}