Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Modeling Photofunctional Transition Metal Complexes

Bolano Losada, Iria LU (2024)
Abstract
Transition metal complexes play a crucial role in solar energy conversion. These coordination compounds have promising applications in dye-sensitized solar cells and photocatalysis, with particular interest in solar fuel production. However, many of the photoactive transition metal complexes used in light-harvesting applications are still based on rare and expensive metals from the transition metal block. As an alternative to the popular Ru or Ir transition metal complexes, new research lines are emerging to solve the challenges in utilizing first-row transition metals, including Fe and Co. Density functional theory (DFT), has been broadly utilized to understand the underlying photophysics and quenching mechanisms of earth-abundant metal... (More)
Transition metal complexes play a crucial role in solar energy conversion. These coordination compounds have promising applications in dye-sensitized solar cells and photocatalysis, with particular interest in solar fuel production. However, many of the photoactive transition metal complexes used in light-harvesting applications are still based on rare and expensive metals from the transition metal block. As an alternative to the popular Ru or Ir transition metal complexes, new research lines are emerging to solve the challenges in utilizing first-row transition metals, including Fe and Co. Density functional theory (DFT), has been broadly utilized to understand the underlying photophysics and quenching mechanisms of earth-abundant metal complexes excited states.

An optimal match of metal and ligand is essential for achieving photoactive metal complexes. The tuning effect of interchanging the metal in a d6 hexa-carbene complex has shown the tight relationship between the metal charge and the final photoproperties. The charge induces a structural compression of the excited states favoring the occurrence of high-energy metal-centered states. The studied Co(III) complex displayed luminescence with an impressive long lifetime from a triplet metal-centered state, proving the functionality of these states. The population of triplet metal-centered states in low-spin d6 and quasi-octahedral complexes promotes several near-degenerate states with distinct structural distortions. Ab initio molecular dynamics in a Rh(III) complex, with dual emission from ligand-centered and metal-centered states, indicate that the entropy gain by geometry distortions drives the crossover reaction. Systems without metal-centered states, such as d0 titanocenes and scandocenes, also encounter distorted ligand-to-metal charge transfer states, which triggers radical ligand formation. Photochemical investigations on ligand-to-metal charge transfer states have been further extended to a Fe(III) carbene complex. Our results indicated that this complex shows a fast photoinduced charge disproportionation at high concentration, and the charge recombination occurs in the inverted Marcus regime. Diffusion of charge-separated species is also relevant to suppress recombination. The control of ion-pairing by solvent interactions promotes the hole migration of a donor molecule after quenching this Fe(III) complex. These active species can subsequently catalyze reactions, such as hydrogen production. A DFT protocol of (photo)redox potentials can assist the selection of optimal photosensitizer, donor, and proton reduction catalyst at a low computational cost. DFT also serves as a useful tool to assess multiple mechanistic reaction paths to generate hydrogen by proton reduction catalysts. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Research Scientist Dixon, Isabelle, Laboratoire de Chimie et Physique Quantiques, Universite de Toulouse, CNRS, Universite Toulouse III - Paul Sabatier, Toulouse, France
organization
publishing date
type
Thesis
publication status
published
subject
keywords
density functional theory, earth-abundant, molecular dynamics, quantum chemistry, photosensitizer, photophysics, photochemistry, solar fuels, solar energy conversion, transition metal complexes
pages
250 pages
publisher
Division of Theoretical Chemistry, Department of Chemistry, Lund University
defense location
Lecture Hall KC:A, Center for Chemistry and Chemical Engineering, Lund.
defense date
2024-04-12 09:00:00
ISBN
978-91-8096-028-1
978-91-8096-029-8
language
English
LU publication?
yes
id
1d0ef96d-a456-4a4a-9280-332a724ed290
date added to LUP
2024-03-18 11:31:53
date last changed
2024-03-20 10:33:43
@phdthesis{1d0ef96d-a456-4a4a-9280-332a724ed290,
  abstract     = {{Transition metal complexes play a crucial role in solar energy conversion. These coordination compounds have promising applications in dye-sensitized solar cells and photocatalysis, with particular interest in solar fuel production. However, many of the photoactive transition metal complexes used in light-harvesting applications are still based on rare and expensive metals from the transition metal block. As an alternative to the popular Ru or Ir transition metal complexes, new research lines are emerging to solve the challenges in utilizing first-row transition metals, including Fe and Co. Density functional theory (DFT), has been broadly utilized to understand the underlying photophysics and quenching mechanisms of earth-abundant metal complexes excited states.<br/><br/>An optimal match of metal and ligand is essential for achieving photoactive metal complexes. The tuning effect of interchanging the metal in a d<sup>6</sup> hexa-carbene complex has shown the tight relationship between the metal charge and the final photoproperties. The charge induces a structural compression of the excited states favoring the occurrence of high-energy metal-centered states. The studied Co(III) complex displayed luminescence with an impressive long lifetime from a triplet metal-centered state, proving the functionality of these states. The population of triplet metal-centered states in low-spin d<sup>6</sup> and <i>quasi</i>-octahedral complexes promotes several near-degenerate states with distinct structural distortions. <i>Ab initio</i> molecular dynamics in a Rh(III) complex, with dual emission from ligand-centered and metal-centered states, indicate that the entropy gain by geometry distortions drives the crossover reaction. Systems without metal-centered states, such as d<sup>0</sup> titanocenes and scandocenes, also encounter distorted ligand-to-metal charge transfer states, which triggers radical ligand formation. Photochemical investigations on ligand-to-metal charge transfer states have been further extended to a Fe(III) carbene complex. Our results indicated that this complex shows a fast photoinduced charge disproportionation at high concentration, and the charge recombination occurs in the inverted Marcus regime. Diffusion of charge-separated species is also relevant to suppress recombination. The control of ion-pairing by solvent interactions promotes the hole migration of a donor molecule after quenching this Fe(III) complex. These active species can subsequently catalyze reactions, such as hydrogen production. A DFT protocol of (photo)redox potentials can assist the selection of optimal photosensitizer, donor, and proton reduction catalyst at a low computational cost. DFT also serves as a useful tool to assess multiple mechanistic reaction paths to generate hydrogen by proton reduction catalysts.}},
  author       = {{Bolano Losada, Iria}},
  isbn         = {{978-91-8096-028-1}},
  keywords     = {{density functional theory; earth-abundant; molecular dynamics; quantum chemistry; photosensitizer; photophysics; photochemistry; solar fuels; solar energy conversion; transition metal complexes}},
  language     = {{eng}},
  publisher    = {{Division of Theoretical Chemistry, Department of Chemistry, Lund University}},
  school       = {{Lund University}},
  title        = {{Modeling Photofunctional Transition Metal Complexes}},
  url          = {{https://lup.lub.lu.se/search/files/177508942/thesis_IBL.pdf}},
  year         = {{2024}},
}