Advanced

Brain Areas Consistently Linked to Individual Differences in Perceptual Decision-making in Younger as well as Older Adults before and after Training

Kuehn, Simone; Schmiedek, Florian; Schott, Bjoern; Ratcliff, Roger; Heinze, Hans-Jochen; Duezel, Emrah; Lindenberger, Ulman and Lövdén, Martin LU (2011) In Journal of Cognitive Neuroscience 23(9). p.2147-2158
Abstract
Perceptual decision-making performance depends on several cognitive and neural processes. Here, we fit Ratcliff's diffusion model to accuracy data and reaction-time distributions from one numerical and one verbal two-choice perceptual-decision task to deconstruct these performance measures into the rate of evidence accumulation (i.e., drift rate), response criterion setting (i.e., boundary separation), and peripheral aspects of performance (i.e., nondecision time). These theoretical processes are then related to individual differences in brain activation by means of multiple regression. The sample consisted of 24 younger and 15 older adults performing the task in fMRI before and after 100 daily 1-hr behavioral training sessions in a... (More)
Perceptual decision-making performance depends on several cognitive and neural processes. Here, we fit Ratcliff's diffusion model to accuracy data and reaction-time distributions from one numerical and one verbal two-choice perceptual-decision task to deconstruct these performance measures into the rate of evidence accumulation (i.e., drift rate), response criterion setting (i.e., boundary separation), and peripheral aspects of performance (i.e., nondecision time). These theoretical processes are then related to individual differences in brain activation by means of multiple regression. The sample consisted of 24 younger and 15 older adults performing the task in fMRI before and after 100 daily 1-hr behavioral training sessions in a multitude of cognitive tasks. Results showed that individual differences in boundary separation were related to striatal activity, whereas differences in drift rate were related to activity in the inferior parietal lobe. These associations were not significantly modified by adult age or perceptual expertise. We conclude that the striatum is involved in regulating response thresholds, whereas the inferior parietal lobe might represent decision-making evidence related to letters and numbers. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Cognitive Neuroscience
volume
23
issue
9
pages
2147 - 2158
publisher
MIT Press
external identifiers
  • wos:000292508900005
  • scopus:79960121204
ISSN
1530-8898
DOI
10.1162/jocn.2010.21564
language
English
LU publication?
yes
id
bf65beb0-18de-4749-ae4d-65c25270c20f (old id 2094106)
date added to LUP
2011-08-25 08:32:26
date last changed
2017-06-04 03:26:13
@article{bf65beb0-18de-4749-ae4d-65c25270c20f,
  abstract     = {Perceptual decision-making performance depends on several cognitive and neural processes. Here, we fit Ratcliff's diffusion model to accuracy data and reaction-time distributions from one numerical and one verbal two-choice perceptual-decision task to deconstruct these performance measures into the rate of evidence accumulation (i.e., drift rate), response criterion setting (i.e., boundary separation), and peripheral aspects of performance (i.e., nondecision time). These theoretical processes are then related to individual differences in brain activation by means of multiple regression. The sample consisted of 24 younger and 15 older adults performing the task in fMRI before and after 100 daily 1-hr behavioral training sessions in a multitude of cognitive tasks. Results showed that individual differences in boundary separation were related to striatal activity, whereas differences in drift rate were related to activity in the inferior parietal lobe. These associations were not significantly modified by adult age or perceptual expertise. We conclude that the striatum is involved in regulating response thresholds, whereas the inferior parietal lobe might represent decision-making evidence related to letters and numbers.},
  author       = {Kuehn, Simone and Schmiedek, Florian and Schott, Bjoern and Ratcliff, Roger and Heinze, Hans-Jochen and Duezel, Emrah and Lindenberger, Ulman and Lövdén, Martin},
  issn         = {1530-8898},
  language     = {eng},
  number       = {9},
  pages        = {2147--2158},
  publisher    = {MIT Press},
  series       = {Journal of Cognitive Neuroscience},
  title        = {Brain Areas Consistently Linked to Individual Differences in Perceptual Decision-making in Younger as well as Older Adults before and after Training},
  url          = {http://dx.doi.org/10.1162/jocn.2010.21564},
  volume       = {23},
  year         = {2011},
}