Advanced

Parallel fiber and climbing fiber responses in rat cerebellar cortical neurons in vivo.

Jirenhed, Dan-Anders LU ; Bengtsson, Fredrik LU and Jörntell, Henrik LU (2013) In Frontiers in Systems Neuroscience 7(May,17).
Abstract
Over the last few years we have seen a rapidly increasing interest in the functions of the inhibitory interneurons of the cerebellar cortex. However, we still have very limited knowledge about their physiological properties in vivo. The present study provides the first description of their spontaneous firing properties and their responses to synaptic inputs under non-anesthetized conditions in the decerebrated rat in vivo. We describe the spike responses of molecular layer interneurons (MLI) in the hemispheric crus1/crus2 region and compare them with those of Purkinje cells (PCs) and Golgi cells (GCs), both with respect to spontaneous activity and responses evoked by direct electrical stimulation of parallel fibers (PFs) and climbing... (More)
Over the last few years we have seen a rapidly increasing interest in the functions of the inhibitory interneurons of the cerebellar cortex. However, we still have very limited knowledge about their physiological properties in vivo. The present study provides the first description of their spontaneous firing properties and their responses to synaptic inputs under non-anesthetized conditions in the decerebrated rat in vivo. We describe the spike responses of molecular layer interneurons (MLI) in the hemispheric crus1/crus2 region and compare them with those of Purkinje cells (PCs) and Golgi cells (GCs), both with respect to spontaneous activity and responses evoked by direct electrical stimulation of parallel fibers (PFs) and climbing fibers (CFs). In agreement with previous findings in the cat, we found that the CF responses in the interneurons consisted of relatively long lasting excitatory modulations of the spike firing. In contrast, activation of PFs induced rapid but short-lasting excitatory spike responses in all types of neurons. We also explored PF input plasticity in the short-term (10 min) using combinations of PF and CF stimulation. With regard to in vivo recordings from cerebellar cortical neurons in the rat, the data presented here provide the first demonstration that PF input to PC can be potentiated using PF burst stimulation and they suggest that PF burst stimulation combined with CF input may lead to potentiation of PF inputs in MLIs. We conclude that the basic responsive properties of the cerebellar cortical neurons in the rat in vivo are similar to those observed in the cat and also that it is likely that similar mechanisms of PF input plasticity apply. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Frontiers in Systems Neuroscience
volume
7
issue
May,17
publisher
Frontiers
external identifiers
  • pmid:23730272
  • scopus:84877258694
ISSN
1662-5137
DOI
10.3389/fnsys.2013.00016
project
Cognition, Communication and Learning
language
English
LU publication?
yes
id
22bb0045-fc18-4e9f-a517-d517673b85e3 (old id 3913807)
alternative location
http://www.ncbi.nlm.nih.gov/pubmed/23730272?dopt=Abstract
date added to LUP
2013-07-01 10:52:10
date last changed
2017-04-23 04:11:17
@article{22bb0045-fc18-4e9f-a517-d517673b85e3,
  abstract     = {Over the last few years we have seen a rapidly increasing interest in the functions of the inhibitory interneurons of the cerebellar cortex. However, we still have very limited knowledge about their physiological properties in vivo. The present study provides the first description of their spontaneous firing properties and their responses to synaptic inputs under non-anesthetized conditions in the decerebrated rat in vivo. We describe the spike responses of molecular layer interneurons (MLI) in the hemispheric crus1/crus2 region and compare them with those of Purkinje cells (PCs) and Golgi cells (GCs), both with respect to spontaneous activity and responses evoked by direct electrical stimulation of parallel fibers (PFs) and climbing fibers (CFs). In agreement with previous findings in the cat, we found that the CF responses in the interneurons consisted of relatively long lasting excitatory modulations of the spike firing. In contrast, activation of PFs induced rapid but short-lasting excitatory spike responses in all types of neurons. We also explored PF input plasticity in the short-term (10 min) using combinations of PF and CF stimulation. With regard to in vivo recordings from cerebellar cortical neurons in the rat, the data presented here provide the first demonstration that PF input to PC can be potentiated using PF burst stimulation and they suggest that PF burst stimulation combined with CF input may lead to potentiation of PF inputs in MLIs. We conclude that the basic responsive properties of the cerebellar cortical neurons in the rat in vivo are similar to those observed in the cat and also that it is likely that similar mechanisms of PF input plasticity apply.},
  articleno    = {16},
  author       = {Jirenhed, Dan-Anders and Bengtsson, Fredrik and Jörntell, Henrik},
  issn         = {1662-5137},
  language     = {eng},
  number       = {May,17},
  publisher    = {Frontiers},
  series       = {Frontiers in Systems Neuroscience},
  title        = {Parallel fiber and climbing fiber responses in rat cerebellar cortical neurons in vivo.},
  url          = {http://dx.doi.org/10.3389/fnsys.2013.00016},
  volume       = {7},
  year         = {2013},
}