Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Facile control of surfactant lamellar phase transition and adsorption behavior

Gonçalves, Rui A. ; Naidjonoka, Polina LU ; Nylander, Tommy LU ; Miguel, Maria G. LU ; Lindman, Björn LU and Lam, Yeng Ming (2020) In RSC Advances 10(31). p.18025-18034
Abstract

This study sets out to investigate the effect of the presence of small water-soluble additives on the tunability of the surfactant gel-to-liquid crystalline (Lß-La) phase transition temperature (Tm) for a bilayer-forming cationic surfactant and the phase behavior of such surfactant systems on dilution. This is strongly driven by the fact that this type of cationic surfactant has many interesting unanswered scientific questions and has found applications in various areas such as consumer care, the petrochemical industry, food science,etc.The underlying surfactant/additive interactions and the interfacial behavior of lamellar surfactant systems including the surfactant deposition on surfaces can provide... (More)

This study sets out to investigate the effect of the presence of small water-soluble additives on the tunability of the surfactant gel-to-liquid crystalline (Lß-La) phase transition temperature (Tm) for a bilayer-forming cationic surfactant and the phase behavior of such surfactant systems on dilution. This is strongly driven by the fact that this type of cationic surfactant has many interesting unanswered scientific questions and has found applications in various areas such as consumer care, the petrochemical industry, food science,etc.The underlying surfactant/additive interactions and the interfacial behavior of lamellar surfactant systems including the surfactant deposition on surfaces can provide new avenues to develop novel product formulations. We have examined dioctadecyldimethyl ammonium chloride (DODAC) in the presence of small polar additives, with respect to the phase behavior upon dilution and the deposition on silica. Differential scanning calorimetry (DSC) is used to track the transition temperature,Tm, and synchrotron and laboratory-based small and wide-angle X-ray scattering (SAXS and WAXS) were used to determine the self-assembled surfactant structure below and above theTm. DSC scans showed that upon dilution the additives could be removed from the surfactant bilayer which in turn tuned theTm. A spontaneous transition from a liquid crystalline (La) phase to a gel (Lß) phase on dilution was demonstrated, which indicated that additives could be taken out from the Laphase. By means ofin situnull ellipsometry, the deposition of a diluted surfactant Lßphase upon replacement of bulk solution by deionized water was followed. This technique enables time-resolved monitoring of the deposited surfactant layer thickness and adsorbed amount, which allows us to understand the deposition on surfaces. Robust layers at least one bilayer-thick were deposited onto the surface and shown to be irreversibly adsorbed due to poor surfactant solvency in water. The thickest layer of surfactant deposited after dilution was found for mixtures with small amounts of additive since high amounts might lead to a phase-separated system.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
RSC Advances
volume
10
issue
31
pages
10 pages
publisher
Royal Society of Chemistry
external identifiers
  • scopus:85085610047
ISSN
2046-2069
DOI
10.1039/d0ra01340d
language
English
LU publication?
yes
id
283d3a73-d597-455f-8c7b-02bd3c56778a
date added to LUP
2020-06-16 16:53:29
date last changed
2023-11-20 07:04:56
@article{283d3a73-d597-455f-8c7b-02bd3c56778a,
  abstract     = {{<p>This study sets out to investigate the effect of the presence of small water-soluble additives on the tunability of the surfactant gel-to-liquid crystalline (L<sub>ß</sub>-L<sub>a</sub>) phase transition temperature (T<sub>m</sub>) for a bilayer-forming cationic surfactant and the phase behavior of such surfactant systems on dilution. This is strongly driven by the fact that this type of cationic surfactant has many interesting unanswered scientific questions and has found applications in various areas such as consumer care, the petrochemical industry, food science,etc.The underlying surfactant/additive interactions and the interfacial behavior of lamellar surfactant systems including the surfactant deposition on surfaces can provide new avenues to develop novel product formulations. We have examined dioctadecyldimethyl ammonium chloride (DODAC) in the presence of small polar additives, with respect to the phase behavior upon dilution and the deposition on silica. Differential scanning calorimetry (DSC) is used to track the transition temperature,T<sub>m</sub>, and synchrotron and laboratory-based small and wide-angle X-ray scattering (SAXS and WAXS) were used to determine the self-assembled surfactant structure below and above theT<sub>m</sub>. DSC scans showed that upon dilution the additives could be removed from the surfactant bilayer which in turn tuned theT<sub>m</sub>. A spontaneous transition from a liquid crystalline (L<sub>a</sub>) phase to a gel (L<sub>ß</sub>) phase on dilution was demonstrated, which indicated that additives could be taken out from the L<sub>a</sub>phase. By means ofin situnull ellipsometry, the deposition of a diluted surfactant L<sub>ß</sub>phase upon replacement of bulk solution by deionized water was followed. This technique enables time-resolved monitoring of the deposited surfactant layer thickness and adsorbed amount, which allows us to understand the deposition on surfaces. Robust layers at least one bilayer-thick were deposited onto the surface and shown to be irreversibly adsorbed due to poor surfactant solvency in water. The thickest layer of surfactant deposited after dilution was found for mixtures with small amounts of additive since high amounts might lead to a phase-separated system.</p>}},
  author       = {{Gonçalves, Rui A. and Naidjonoka, Polina and Nylander, Tommy and Miguel, Maria G. and Lindman, Björn and Lam, Yeng Ming}},
  issn         = {{2046-2069}},
  language     = {{eng}},
  month        = {{05}},
  number       = {{31}},
  pages        = {{18025--18034}},
  publisher    = {{Royal Society of Chemistry}},
  series       = {{RSC Advances}},
  title        = {{Facile control of surfactant lamellar phase transition and adsorption behavior}},
  url          = {{http://dx.doi.org/10.1039/d0ra01340d}},
  doi          = {{10.1039/d0ra01340d}},
  volume       = {{10}},
  year         = {{2020}},
}