Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Thermal performance in latticework ducts with various endwall shapes for aero-craft turbine cooling

Luo, Lei ; Du, Wei LU ; Liu, Jinlong ; Sun, Peipei ; Wang, Songtao and Sunden, Bengt LU (2022) In Aerospace Science and Technology 126.
Abstract

The latticework duct plays an important role in turbine blade cooling for aircraft engines. The present numerical research provided information about the thermal performance in latticework ducts with different endwall shapes. Each latticework duct analyzed in this study had a crossing angle of 90° and 11 sub channels on both the two sides of the endwall. A numerical investigation was conducted at five Reynolds numbers (11,000 to 55,000) and six endwall shapes. The local Nu number and flow structures were analyzed in detail. For a rectangular latticework duct, a jet region generated considerable Nusselt numbers, and the helical flow leaded to a uniform Nu number. Moreover, the turning and jet effects caused a high friction factor. The... (More)

The latticework duct plays an important role in turbine blade cooling for aircraft engines. The present numerical research provided information about the thermal performance in latticework ducts with different endwall shapes. Each latticework duct analyzed in this study had a crossing angle of 90° and 11 sub channels on both the two sides of the endwall. A numerical investigation was conducted at five Reynolds numbers (11,000 to 55,000) and six endwall shapes. The local Nu number and flow structures were analyzed in detail. For a rectangular latticework duct, a jet region generated considerable Nusselt numbers, and the helical flow leaded to a uniform Nu number. Moreover, the turning and jet effects caused a high friction factor. The results also showed that an appropriate endwall shape could increase the thermal performance in a latticework duct. The different endwall shapes mainly altered the flow structure nearby the sidewall of the latticework, especially for the spiral flow. Moreover, the endwall shape also influenced the heat transfer and flow behavior. This phenomenon occurred because the different endwall shapes increased the turbulence of the cooling air to different extents.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Endwall shape, Helical flow, Jet region, Latticework duct, Turning region
in
Aerospace Science and Technology
volume
126
article number
107588
publisher
Elsevier Masson SAS
external identifiers
  • scopus:85129766632
ISSN
1270-9638
DOI
10.1016/j.ast.2022.107588
language
English
LU publication?
yes
id
2b14cc9b-c5e9-4adc-8d95-d6ff982bf7bd
date added to LUP
2022-12-28 11:40:35
date last changed
2023-11-21 14:47:04
@article{2b14cc9b-c5e9-4adc-8d95-d6ff982bf7bd,
  abstract     = {{<p>The latticework duct plays an important role in turbine blade cooling for aircraft engines. The present numerical research provided information about the thermal performance in latticework ducts with different endwall shapes. Each latticework duct analyzed in this study had a crossing angle of 90° and 11 sub channels on both the two sides of the endwall. A numerical investigation was conducted at five Reynolds numbers (11,000 to 55,000) and six endwall shapes. The local Nu number and flow structures were analyzed in detail. For a rectangular latticework duct, a jet region generated considerable Nusselt numbers, and the helical flow leaded to a uniform Nu number. Moreover, the turning and jet effects caused a high friction factor. The results also showed that an appropriate endwall shape could increase the thermal performance in a latticework duct. The different endwall shapes mainly altered the flow structure nearby the sidewall of the latticework, especially for the spiral flow. Moreover, the endwall shape also influenced the heat transfer and flow behavior. This phenomenon occurred because the different endwall shapes increased the turbulence of the cooling air to different extents.</p>}},
  author       = {{Luo, Lei and Du, Wei and Liu, Jinlong and Sun, Peipei and Wang, Songtao and Sunden, Bengt}},
  issn         = {{1270-9638}},
  keywords     = {{Endwall shape; Helical flow; Jet region; Latticework duct; Turning region}},
  language     = {{eng}},
  publisher    = {{Elsevier Masson SAS}},
  series       = {{Aerospace Science and Technology}},
  title        = {{Thermal performance in latticework ducts with various endwall shapes for aero-craft turbine cooling}},
  url          = {{http://dx.doi.org/10.1016/j.ast.2022.107588}},
  doi          = {{10.1016/j.ast.2022.107588}},
  volume       = {{126}},
  year         = {{2022}},
}