Advanced

Discfiltration and ozonation for reduction of nutrients and organic micro-pollutants from wastewater - a pilot study

Väänänen, Janne LU ; Nilsson, Filip LU ; la Cour Jansen, Jes LU ; Hörsing, Maritha LU ; Hagman, Marinette LU and Jönsson, Karin LU (2014) In Water Practice & Technology 9(4). p.475-482
Abstract (Swedish)
The combination of coagulation/flocculation and discfiltration with ozonation to reduce nutrients and organic micro-pollutants in secondary effluent was studied in pilot scale at Lundåkraverket wastewater treatment plant in Landskrona, Sweden. With a chemical dose of 4 gAl3þ/m3 and 1.5 g/m3 cationic polymer as active material effluent water quality with regards to total phosphorous (Tot-P), suspended solids and turbidity were 0.03, 2 mg/l and 0.5 Nephelometric Turbidity Units (NTU) in average. The effluent water quality was similar whether ozonation with an applied ozone dose of 2–9 gO3/m3 was performed prior to or after coagulation/flocculation/discfiltration. The results were corresponding to removal efficiencies for the... (More)
The combination of coagulation/flocculation and discfiltration with ozonation to reduce nutrients and organic micro-pollutants in secondary effluent was studied in pilot scale at Lundåkraverket wastewater treatment plant in Landskrona, Sweden. With a chemical dose of 4 gAl3þ/m3 and 1.5 g/m3 cationic polymer as active material effluent water quality with regards to total phosphorous (Tot-P), suspended solids and turbidity were 0.03, 2 mg/l and 0.5 Nephelometric Turbidity Units (NTU) in average. The effluent water quality was similar whether ozonation with an applied ozone dose of 2–9 gO3/m3 was performed prior to or after coagulation/flocculation/discfiltration. The results were corresponding to removal efficiencies for the coagulation/flocculation/discfiltration process of 94, 74 and 85% for Tot-P, suspended solids and turbidity, respectively. For organic micro-pollutants removal, it was found to be beneficial to perform coagulation/flocculation/discfiltration prior to ozonation as the ozone requirements were lowered for the dosing intervals applied. The removal was in the range of 38–98% depending on process configuration and ozone dose. (Less)
Abstract
The combination of coagulation/flocculation and discfiltration with ozonation to reduce nutrients and organic micro-pollutants in secondary effluent was studied in pilot scale at Lundåkraverket wastewater treatment plant in Landskrona, Sweden. With a chemical dose of 4 gAl3+/m3 and 1.5 g/m3 cationic polymer as active material effluent water quality with regards to total phosphorous (Tot-P), suspended solids and turbidity were 0.03, 2 mg/l and 0.5 Nephelometric Turbidity Units (NTU) in average. The effluent water quality was similar whether ozonation with an applied ozone dose of 2–9 gO3/m3 was performed prior to or after coagulation/flocculation/discfiltration. The results were corresponding to removal efficiencies for the... (More)
The combination of coagulation/flocculation and discfiltration with ozonation to reduce nutrients and organic micro-pollutants in secondary effluent was studied in pilot scale at Lundåkraverket wastewater treatment plant in Landskrona, Sweden. With a chemical dose of 4 gAl3+/m3 and 1.5 g/m3 cationic polymer as active material effluent water quality with regards to total phosphorous (Tot-P), suspended solids and turbidity were 0.03, 2 mg/l and 0.5 Nephelometric Turbidity Units (NTU) in average. The effluent water quality was similar whether ozonation with an applied ozone dose of 2–9 gO3/m3 was performed prior to or after coagulation/flocculation/discfiltration. The results were corresponding to removal efficiencies for the coagulation/flocculation/discfiltration process of 94, 74 and 85% for Tot-P, suspended solids and turbidity, respectively. For organic micro-pollutants removal, it was found to be beneficial to perform coagulation/flocculation/discfiltration prior to ozonation as the ozone requirements were lowered for the dosing intervals applied. The removal was in the range of 38–98% depending on process configuration and ozone dose (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Water Practice & Technology
volume
9
issue
4
pages
8 pages
publisher
IWA Publishing
external identifiers
  • scopus:84919696799
ISSN
1751-231X
DOI
10.2166/wpt.2014.052
language
English
LU publication?
yes
id
2c21a694-657f-46b2-a339-cf6d9be01591
date added to LUP
2017-12-14 08:57:21
date last changed
2018-01-07 21:25:55
@article{2c21a694-657f-46b2-a339-cf6d9be01591,
  abstract     = {The combination of coagulation/flocculation and discfiltration with ozonation to reduce nutrients and organic micro-pollutants in secondary effluent was studied in pilot scale at Lundåkraverket wastewater treatment plant in Landskrona, Sweden. With a chemical dose of 4 gAl3+/m3 and 1.5 g/m3 cationic polymer as active material effluent water quality with regards to total phosphorous (Tot-P), suspended solids and turbidity were 0.03, 2 mg/l and 0.5 Nephelometric Turbidity Units (NTU) in average. The effluent water quality was similar whether ozonation with an applied ozone dose of 2–9 gO3/m3 was performed prior to or after coagulation/flocculation/discfiltration. The results were corresponding to removal efficiencies for the coagulation/flocculation/discfiltration process of 94, 74 and 85% for Tot-P, suspended solids and turbidity, respectively. For organic micro-pollutants removal, it was found to be beneficial to perform coagulation/flocculation/discfiltration prior to ozonation as the ozone requirements were lowered for the dosing intervals applied. The removal was in the range of 38–98% depending on process configuration and ozone dose},
  author       = {Väänänen, Janne and Nilsson, Filip and la Cour Jansen, Jes and Hörsing, Maritha and Hagman, Marinette and Jönsson, Karin},
  issn         = {1751-231X},
  language     = {eng},
  number       = {4},
  pages        = {475--482},
  publisher    = {IWA Publishing},
  series       = {Water Practice & Technology},
  title        = {Discfiltration and ozonation for reduction of nutrients and organic micro-pollutants from wastewater - a pilot study},
  url          = {http://dx.doi.org/10.2166/wpt.2014.052},
  volume       = {9},
  year         = {2014},
}