Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Optimal Transport Based Impulse Response Interpolation in the Presence of Calibration Errors

Sundstrom, David LU ; Elvander, Filip LU and Jakobsson, Andreas LU orcid (2024) In IEEE Transactions on Signal Processing 72. p.1548-1559
Abstract

Acoustic impulse responses (IRs) are widely used to model sound propagation between two points in space. Being a point-to-point description, IRs are generally estimated based on input-output pairs for source and sensor positions of interest. Alternatively, the IR at an arbitrary location in space may be constructed based on interpolation techniques, thus alleviating the need of densely sampling the space. The resulting IR interpolation problem is of general interest, e.g., for imaging of subsurface structures based on seismic waves, rendering of audio and radar IRs, as well as for numerous spatial audio applications. A commonly used model represents the acoustic reflections as image sources, often being determined using a sparse... (More)

Acoustic impulse responses (IRs) are widely used to model sound propagation between two points in space. Being a point-to-point description, IRs are generally estimated based on input-output pairs for source and sensor positions of interest. Alternatively, the IR at an arbitrary location in space may be constructed based on interpolation techniques, thus alleviating the need of densely sampling the space. The resulting IR interpolation problem is of general interest, e.g., for imaging of subsurface structures based on seismic waves, rendering of audio and radar IRs, as well as for numerous spatial audio applications. A commonly used model represents the acoustic reflections as image sources, often being determined using a sparse reconstruction framework employing spatial dictionaries. However, in the presence of calibration errors, such spatial dictionaries tend to inaccurately represent the actual propagation, limiting the use of these methods in practical applications. Instead of explicitly assuming an image source model, we here introduce a trade-off between minimizing the distance to an image source model and fitting the data by means of a multi-marginal optimal transport problem. The proposed method is evaluated on the early part of real acoustic IRs from the MeshRIR data set, illustrating its preferable performance as compared to state-of-the-art spatial dictionary-based IR interpolation approaches.

(Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Calibration, Delays, Dictionaries, Geometry, impulse response interpolation, Interpolation, Optimal mass transport, Radar imaging, Reflection, Robust time-delay estimation
in
IEEE Transactions on Signal Processing
volume
72
pages
12 pages
publisher
IEEE - Institute of Electrical and Electronics Engineers Inc.
external identifiers
  • scopus:85186988523
ISSN
1053-587X
DOI
10.1109/TSP.2024.3372249
language
English
LU publication?
yes
id
2c2d42b6-b2c2-44a3-90bd-929aadad5510
date added to LUP
2024-04-03 14:33:14
date last changed
2024-10-14 12:02:26
@article{2c2d42b6-b2c2-44a3-90bd-929aadad5510,
  abstract     = {{<p>Acoustic impulse responses (IRs) are widely used to model sound propagation between two points in space. Being a point-to-point description, IRs are generally estimated based on input-output pairs for source and sensor positions of interest. Alternatively, the IR at an arbitrary location in space may be constructed based on interpolation techniques, thus alleviating the need of densely sampling the space. The resulting IR interpolation problem is of general interest, e.g., for imaging of subsurface structures based on seismic waves, rendering of audio and radar IRs, as well as for numerous spatial audio applications. A commonly used model represents the acoustic reflections as image sources, often being determined using a sparse reconstruction framework employing spatial dictionaries. However, in the presence of calibration errors, such spatial dictionaries tend to inaccurately represent the actual propagation, limiting the use of these methods in practical applications. Instead of explicitly assuming an image source model, we here introduce a trade-off between minimizing the distance to an image source model and fitting the data by means of a multi-marginal optimal transport problem. The proposed method is evaluated on the early part of real acoustic IRs from the MeshRIR data set, illustrating its preferable performance as compared to state-of-the-art spatial dictionary-based IR interpolation approaches.</p>}},
  author       = {{Sundstrom, David and Elvander, Filip and Jakobsson, Andreas}},
  issn         = {{1053-587X}},
  keywords     = {{Calibration; Delays; Dictionaries; Geometry; impulse response interpolation; Interpolation; Optimal mass transport; Radar imaging; Reflection; Robust time-delay estimation}},
  language     = {{eng}},
  pages        = {{1548--1559}},
  publisher    = {{IEEE - Institute of Electrical and Electronics Engineers Inc.}},
  series       = {{IEEE Transactions on Signal Processing}},
  title        = {{Optimal Transport Based Impulse Response Interpolation in the Presence of Calibration Errors}},
  url          = {{http://dx.doi.org/10.1109/TSP.2024.3372249}},
  doi          = {{10.1109/TSP.2024.3372249}},
  volume       = {{72}},
  year         = {{2024}},
}