Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Structure Matters : Asymmetric CO Oxidation at Rh Steps with Different Atomic Packing

García-Martínez, Fernando ; Rämisch, Lisa LU ; Ali, Khadiza LU ; Waluyo, Iradwikanari ; Bodero, Rodrigo Castrillo ; Pfaff, Sebastian LU ; Villar-García, Ignacio J. ; Walter, Andrew Leigh ; Hunt, Adrian and Pérez-Dieste, Virginia , et al. (2022) In Journal of the American Chemical Society 144(33). p.15363-15371
Abstract

Curved crystals are a simple but powerful approach to bridge the gap between single crystal surfaces and nanoparticle catalysts, by allowing a rational assessment of the role of active step sites in gas-surface reactions. Using a curved Rh(111) crystal, here, we investigate the effect of A-type (square geometry) and B-type (triangular geometry) atomic packing of steps on the catalytic CO oxidation on Rh at millibar pressures. Imaging the crystal during reaction ignition with laser-induced CO2fluorescence demonstrates a two-step process, where B-steps ignite at lower temperature than A-steps. Such fundamental dissimilarity is explained in ambient pressure X-ray photoemission (AP-XPS) experiments, which reveal partial CO... (More)

Curved crystals are a simple but powerful approach to bridge the gap between single crystal surfaces and nanoparticle catalysts, by allowing a rational assessment of the role of active step sites in gas-surface reactions. Using a curved Rh(111) crystal, here, we investigate the effect of A-type (square geometry) and B-type (triangular geometry) atomic packing of steps on the catalytic CO oxidation on Rh at millibar pressures. Imaging the crystal during reaction ignition with laser-induced CO2fluorescence demonstrates a two-step process, where B-steps ignite at lower temperature than A-steps. Such fundamental dissimilarity is explained in ambient pressure X-ray photoemission (AP-XPS) experiments, which reveal partial CO desorption and oxygen buildup only at B-steps. AP-XPS also proves that A-B step asymmetries extend to the active stage: at A-steps, low-active O-Rh-O trilayers buildup immediately after ignition, while highly active chemisorbed O is the dominant species on B-type steps. We conclude that B-steps are more efficient than A-steps for the CO oxidation.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of the American Chemical Society
volume
144
issue
33
pages
9 pages
publisher
The American Chemical Society (ACS)
external identifiers
  • scopus:85136602390
  • pmid:35960901
ISSN
0002-7863
DOI
10.1021/jacs.2c06733
language
English
LU publication?
yes
additional info
Funding Information: We acknowledge financial support from Grant Nos. PID2020-116093RB-C44 and PID2019-107338RB-C6-3, funded by the Spanish MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe, the Basque Government (Grant No. IT-1591-22), Knut and Alice Wallenberg (KAW) project Atomistic design of new catalysts (Project No. KAW2015.0058), the Swedish Research Council (Project No. 2018-03434), the Swedish Foundation for Strategic Research (Project No. ITM17-0045), the Å Forsk Foundation, and the Crafoord Foundation. This research used resources of the 23-ID-2 (IOS) beamline of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory, under Contract No. DE-SC0012704. Part of these experiments were performed at Circe beamline at ALBA Synchrotron with the collaboration of ALBA staff. Open Access funding is provided by the University of the Basque Country Funding Information: We acknowledge financial support from Grant Nos. PID2020-116093RB-C44 and PID2019-107338RB-C6-3, funded by the Spanish MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”, the Basque Government (Grant No. IT-1591-22), Knut and Alice Wallenberg (KAW) project “Atomistic design of new catalysts” (Project No. KAW2015.0058), the Swedish Research Council (Project No. 2018-03434), the Swedish Foundation for Strategic Research (Project No. ITM17-0045), the Å Forsk Foundation, and the Crafoord Foundation. This research used resources of the 23-ID-2 (IOS) beamline of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory, under Contract No. DE-SC0012704. Part of these experiments were performed at Circe beamline at ALBA Synchrotron with the collaboration of ALBA staff. Open Access funding is provided by the University of the Basque Country. Publisher Copyright: © 2022 American Chemical Society. All rights reserved.
id
2def5709-339e-4fbd-8529-09a9e39f9d5f
date added to LUP
2022-09-22 13:57:42
date last changed
2024-06-13 19:33:11
@article{2def5709-339e-4fbd-8529-09a9e39f9d5f,
  abstract     = {{<p>Curved crystals are a simple but powerful approach to bridge the gap between single crystal surfaces and nanoparticle catalysts, by allowing a rational assessment of the role of active step sites in gas-surface reactions. Using a curved Rh(111) crystal, here, we investigate the effect of A-type (square geometry) and B-type (triangular geometry) atomic packing of steps on the catalytic CO oxidation on Rh at millibar pressures. Imaging the crystal during reaction ignition with laser-induced CO<sub>2</sub>fluorescence demonstrates a two-step process, where B-steps ignite at lower temperature than A-steps. Such fundamental dissimilarity is explained in ambient pressure X-ray photoemission (AP-XPS) experiments, which reveal partial CO desorption and oxygen buildup only at B-steps. AP-XPS also proves that A-B step asymmetries extend to the active stage: at A-steps, low-active O-Rh-O trilayers buildup immediately after ignition, while highly active chemisorbed O is the dominant species on B-type steps. We conclude that B-steps are more efficient than A-steps for the CO oxidation.</p>}},
  author       = {{García-Martínez, Fernando and Rämisch, Lisa and Ali, Khadiza and Waluyo, Iradwikanari and Bodero, Rodrigo Castrillo and Pfaff, Sebastian and Villar-García, Ignacio J. and Walter, Andrew Leigh and Hunt, Adrian and Pérez-Dieste, Virginia and Zetterberg, Johan and Lundgren, Edvin and Schiller, Frederik and Ortega, J. Enrique}},
  issn         = {{0002-7863}},
  language     = {{eng}},
  month        = {{08}},
  number       = {{33}},
  pages        = {{15363--15371}},
  publisher    = {{The American Chemical Society (ACS)}},
  series       = {{Journal of the American Chemical Society}},
  title        = {{Structure Matters : Asymmetric CO Oxidation at Rh Steps with Different Atomic Packing}},
  url          = {{http://dx.doi.org/10.1021/jacs.2c06733}},
  doi          = {{10.1021/jacs.2c06733}},
  volume       = {{144}},
  year         = {{2022}},
}