A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses
(2016) In Molecular Therapy - Methods and Clinical Development 5.- Abstract
Preclinical and clinical data stress the importance of pharmacologically-controlling glial cell line-derived neurotrophic factor (GDNF) intracerebral administration to treat PD. The main challenge is finding a combination of a genetic switch and a drug which, when administered at a clinically-approved dose, reaches the brain in sufficient amounts to induce a therapeutic effect. We describe a highly-sensitive doxycycline-inducible adeno-associated virus (AAV) vector. This vector allowed for the first time a longitudinal analysis of inducible transgene expression in the brain using bioluminescence imaging. To evaluate the dose range of GDNF biological activity, the inducible AAV vector (8.0 × 10(9) viral genomes) was injected in the rat... (More)
Preclinical and clinical data stress the importance of pharmacologically-controlling glial cell line-derived neurotrophic factor (GDNF) intracerebral administration to treat PD. The main challenge is finding a combination of a genetic switch and a drug which, when administered at a clinically-approved dose, reaches the brain in sufficient amounts to induce a therapeutic effect. We describe a highly-sensitive doxycycline-inducible adeno-associated virus (AAV) vector. This vector allowed for the first time a longitudinal analysis of inducible transgene expression in the brain using bioluminescence imaging. To evaluate the dose range of GDNF biological activity, the inducible AAV vector (8.0 × 10(9) viral genomes) was injected in the rat striatum at four delivery sites and increasing doxycycline doses administered orally. ERK/Akt signaling activation as well as tyrosine hydroxylase downregulation, a consequence of long-term GDNF treatment, were induced at plasmatic doxycycline concentrations of 140 and 320 ng/ml respectively, which are known not to increase antibiotic-resistant microorganisms in patients. In these conditions, GDNF covered the majority of the striatum. No behavioral abnormalities or weight loss were observed. Motor asymmetry resulting from unilateral GDNF treatment only appeared with a 2.5-fold higher vector and a 13-fold higher inducer doses. Our data suggest that using the herein-described inducible AAV vector, biological effects of GDNF can be obtained in response to sub-antimicrobial doxycycline doses.
(Less)
- author
- organization
- publishing date
- 2016
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- Journal Article
- in
- Molecular Therapy - Methods and Clinical Development
- volume
- 5
- article number
- 16027
- publisher
- Nature Publishing Group
- external identifiers
-
- scopus:85015208987
- wos:000393455200038
- pmid:27069954
- ISSN
- 2329-0501
- DOI
- 10.1038/mtm.2016.27
- language
- English
- LU publication?
- yes
- id
- 2e3297fa-27a2-4c3a-aa5f-ed7ce7760fc1
- date added to LUP
- 2016-10-04 13:19:08
- date last changed
- 2025-01-12 12:39:35
@article{2e3297fa-27a2-4c3a-aa5f-ed7ce7760fc1, abstract = {{<p>Preclinical and clinical data stress the importance of pharmacologically-controlling glial cell line-derived neurotrophic factor (GDNF) intracerebral administration to treat PD. The main challenge is finding a combination of a genetic switch and a drug which, when administered at a clinically-approved dose, reaches the brain in sufficient amounts to induce a therapeutic effect. We describe a highly-sensitive doxycycline-inducible adeno-associated virus (AAV) vector. This vector allowed for the first time a longitudinal analysis of inducible transgene expression in the brain using bioluminescence imaging. To evaluate the dose range of GDNF biological activity, the inducible AAV vector (8.0 × 10(9) viral genomes) was injected in the rat striatum at four delivery sites and increasing doxycycline doses administered orally. ERK/Akt signaling activation as well as tyrosine hydroxylase downregulation, a consequence of long-term GDNF treatment, were induced at plasmatic doxycycline concentrations of 140 and 320 ng/ml respectively, which are known not to increase antibiotic-resistant microorganisms in patients. In these conditions, GDNF covered the majority of the striatum. No behavioral abnormalities or weight loss were observed. Motor asymmetry resulting from unilateral GDNF treatment only appeared with a 2.5-fold higher vector and a 13-fold higher inducer doses. Our data suggest that using the herein-described inducible AAV vector, biological effects of GDNF can be obtained in response to sub-antimicrobial doxycycline doses.</p>}}, author = {{Chtarto, Abdelwahed and Humbert-Claude, Marie and Bockstael, Olivier and Das, Atze T and Boutry, Sébastien and Breger, Ludivine S and Klaver, Bep and Melas, Catherine and Barroso-Chinea, Pedro and Gonzalez-Hernandez, Tomas and Muller, Robert N and DeWitte, Olivier and Levivier, Marc and Lundberg, Cecilia and Berkhout, Ben and Tenenbaum, Liliane}}, issn = {{2329-0501}}, keywords = {{Journal Article}}, language = {{eng}}, publisher = {{Nature Publishing Group}}, series = {{Molecular Therapy - Methods and Clinical Development}}, title = {{A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses}}, url = {{http://dx.doi.org/10.1038/mtm.2016.27}}, doi = {{10.1038/mtm.2016.27}}, volume = {{5}}, year = {{2016}}, }