Advanced

Ca(10)Pt(7)Tt(3) (Tt = Si, Ge): New Platinide Phases Featuring Electron-Rich 4c-6e Bonded [Pt(7)Tt(3)](20-) Intermetalloid Clusters.

Doverbratt, Isa LU ; Ponou, Simeon LU ; Lidin, Sven LU and Fredrickson, Daniel C (2012) In Inorganic Chemistry 51(21). p.11980-11985
Abstract
Two new phases Ca(10)Pt(7)Tt(3) (with Tt = Si, Ge) were obtained by reacting stoichiometric mixtures of the elements at high temperature. Their structures were refined from single crystal X-ray diffraction data. They are isostructural and crystallize in the Ba(10)Al(3)Ge(7) type structure, space group P6(3)/mcm (No. 193) with a = b = 8.7735(3) Å, c = 13.8260(5) Å, V = 921.66(6) Å(3), Z = 2 for Tt = Si, and a = b = 8.7995(6) Å, c = 13.9217(14) Å, V = 933.56(16) Å(3) for Tt = Ge phase. The most interesting structural features in these phases are the propeller shape {Pt(7)Tt(3)} (Tt = Si, Ge) intermetalloid clusters in a D(3h) local symmetry. LMTO electronic structure calculations and COHP analyses reveal that both Ca(10)Pt(7)Tt(3) (Tt = Si,... (More)
Two new phases Ca(10)Pt(7)Tt(3) (with Tt = Si, Ge) were obtained by reacting stoichiometric mixtures of the elements at high temperature. Their structures were refined from single crystal X-ray diffraction data. They are isostructural and crystallize in the Ba(10)Al(3)Ge(7) type structure, space group P6(3)/mcm (No. 193) with a = b = 8.7735(3) Å, c = 13.8260(5) Å, V = 921.66(6) Å(3), Z = 2 for Tt = Si, and a = b = 8.7995(6) Å, c = 13.9217(14) Å, V = 933.56(16) Å(3) for Tt = Ge phase. The most interesting structural features in these phases are the propeller shape {Pt(7)Tt(3)} (Tt = Si, Ge) intermetalloid clusters in a D(3h) local symmetry. LMTO electronic structure calculations and COHP analyses reveal that both Ca(10)Pt(7)Tt(3) (Tt = Si, Ge) phases are charge optimized, which is not predicted by the classical Zintl concept and the octet or Wade-Mingo's rules, but rather by a more complex bonding model based on the unprecedented electron-rich 4c-6e multicenter bonding. The clusters are best described as three-condensed trigonal planar [TtPt(3)](8-) units, resulting in a central Pt atom also with a trigonal planar coordination of three symmetrical equivalent Si/Ge atoms that are further connected to two terminal Pt atoms each. The "trefoil" electron-rich multicenter bonding is proposed here for the first time, and may be viewed as a unique bonding feature with potential relevance for the catalytic properties of the noble metal platinum. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Inorganic Chemistry
volume
51
issue
21
pages
11980 - 11985
publisher
The American Chemical Society
external identifiers
  • wos:000313220200088
  • pmid:23088157
  • scopus:84868343897
ISSN
1520-510X
DOI
10.1021/ic301867q
language
English
LU publication?
yes
id
a75bd8cd-16d5-4451-a830-a2e2f6ec8d92 (old id 3160483)
date added to LUP
2012-12-17 12:11:40
date last changed
2017-01-01 03:39:19
@article{a75bd8cd-16d5-4451-a830-a2e2f6ec8d92,
  abstract     = {Two new phases Ca(10)Pt(7)Tt(3) (with Tt = Si, Ge) were obtained by reacting stoichiometric mixtures of the elements at high temperature. Their structures were refined from single crystal X-ray diffraction data. They are isostructural and crystallize in the Ba(10)Al(3)Ge(7) type structure, space group P6(3)/mcm (No. 193) with a = b = 8.7735(3) Å, c = 13.8260(5) Å, V = 921.66(6) Å(3), Z = 2 for Tt = Si, and a = b = 8.7995(6) Å, c = 13.9217(14) Å, V = 933.56(16) Å(3) for Tt = Ge phase. The most interesting structural features in these phases are the propeller shape {Pt(7)Tt(3)} (Tt = Si, Ge) intermetalloid clusters in a D(3h) local symmetry. LMTO electronic structure calculations and COHP analyses reveal that both Ca(10)Pt(7)Tt(3) (Tt = Si, Ge) phases are charge optimized, which is not predicted by the classical Zintl concept and the octet or Wade-Mingo's rules, but rather by a more complex bonding model based on the unprecedented electron-rich 4c-6e multicenter bonding. The clusters are best described as three-condensed trigonal planar [TtPt(3)](8-) units, resulting in a central Pt atom also with a trigonal planar coordination of three symmetrical equivalent Si/Ge atoms that are further connected to two terminal Pt atoms each. The "trefoil" electron-rich multicenter bonding is proposed here for the first time, and may be viewed as a unique bonding feature with potential relevance for the catalytic properties of the noble metal platinum.},
  author       = {Doverbratt, Isa and Ponou, Simeon and Lidin, Sven and Fredrickson, Daniel C},
  issn         = {1520-510X},
  language     = {eng},
  number       = {21},
  pages        = {11980--11985},
  publisher    = {The American Chemical Society},
  series       = {Inorganic Chemistry},
  title        = {Ca(10)Pt(7)Tt(3) (Tt = Si, Ge): New Platinide Phases Featuring Electron-Rich 4c-6e Bonded [Pt(7)Tt(3)](20-) Intermetalloid Clusters.},
  url          = {http://dx.doi.org/10.1021/ic301867q},
  volume       = {51},
  year         = {2012},
}