Advanced

Comparison of different modeling approaches to better evaluate greenhouse gas emissions from whole wastewater treatment plants

Corominas, Lluis; Flores, Xavier LU ; Snip, Laura and Vanrolleghem, Peter A. (2012) In Biotechnology and Bioengineering 109(11). p.2854-2863
Abstract
New tools are being developed to estimate greenhouse gas (GHG) emissions from wastewater treatment plants (WWTPs). There is a trend to move from empirical factors to simple comprehensive and more complex process-based models. Thus, the main objective of this study is to demonstrate the importance of using process-based dynamic models to better evaluate GHG emissions. This is tackled by defining a virtual case study based on the whole plant Benchmark Simulation Model Platform No. 2 (BSM2) and estimating GHG emissions using two approaches: (1) a combination of simple comprehensive models based on empirical assumptions and (2) a more sophisticated approach, which describes the mechanistic production of nitrous oxide (N2O) in the biological... (More)
New tools are being developed to estimate greenhouse gas (GHG) emissions from wastewater treatment plants (WWTPs). There is a trend to move from empirical factors to simple comprehensive and more complex process-based models. Thus, the main objective of this study is to demonstrate the importance of using process-based dynamic models to better evaluate GHG emissions. This is tackled by defining a virtual case study based on the whole plant Benchmark Simulation Model Platform No. 2 (BSM2) and estimating GHG emissions using two approaches: (1) a combination of simple comprehensive models based on empirical assumptions and (2) a more sophisticated approach, which describes the mechanistic production of nitrous oxide (N2O) in the biological reactor (ASMN) and the generation of carbon dioxide (CO2) and methane (CH4) from the Anaerobic Digestion Model 1 (ADM1). Models already presented in literature are used, but modifications compared to the previously published ASMN model have been made. Also model interfaces between the ASMN and the ADM1 models have been developed. The results show that the use of the different approaches leads to significant differences in the N2O emissions (a factor of 3) but not in the CH4 emissions (about 4%). Estimations of GHG emissions are also compared for steady-state and dynamic simulations. Averaged values for GHG emissions obtained with steady-state and dynamic simulations are rather similar. However, when looking at the dynamics of N2O emissions, large variability (36?ton?CO2e?day-1) is observed due to changes in the influent wastewater C/N ratio and temperature which would not be captured by a steady-state analysis (4.4?ton?CO2e?day-1). Finally, this study also shows the effect of changing the anaerobic digestion volume on the total GHG emissions. Decreasing the anaerobic digester volume resulted in a slight reduction in CH4 emissions (about 5%), but significantly decreased N2O emissions in the water line (by 14%). Biotechnol. Bioeng. 2012; 109: 28542863. (c) 2012 Wiley Periodicals, Inc. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
activated sludge modeling, anaerobic digestion, benchmarking, global, warming, model-based evaluation, nitrous oxide, plant-wide model, sustainability, whole plant modeling
in
Biotechnology and Bioengineering
volume
109
issue
11
pages
2854 - 2863
publisher
John Wiley & Sons
external identifiers
  • wos:000309185600017
  • scopus:84866746304
ISSN
1097-0290
DOI
10.1002/bit.24544
language
English
LU publication?
yes
id
d226427c-b7ac-488a-93ec-d0a5af983ffd (old id 3189607)
date added to LUP
2012-12-04 14:52:11
date last changed
2017-10-01 03:31:49
@article{d226427c-b7ac-488a-93ec-d0a5af983ffd,
  abstract     = {New tools are being developed to estimate greenhouse gas (GHG) emissions from wastewater treatment plants (WWTPs). There is a trend to move from empirical factors to simple comprehensive and more complex process-based models. Thus, the main objective of this study is to demonstrate the importance of using process-based dynamic models to better evaluate GHG emissions. This is tackled by defining a virtual case study based on the whole plant Benchmark Simulation Model Platform No. 2 (BSM2) and estimating GHG emissions using two approaches: (1) a combination of simple comprehensive models based on empirical assumptions and (2) a more sophisticated approach, which describes the mechanistic production of nitrous oxide (N2O) in the biological reactor (ASMN) and the generation of carbon dioxide (CO2) and methane (CH4) from the Anaerobic Digestion Model 1 (ADM1). Models already presented in literature are used, but modifications compared to the previously published ASMN model have been made. Also model interfaces between the ASMN and the ADM1 models have been developed. The results show that the use of the different approaches leads to significant differences in the N2O emissions (a factor of 3) but not in the CH4 emissions (about 4%). Estimations of GHG emissions are also compared for steady-state and dynamic simulations. Averaged values for GHG emissions obtained with steady-state and dynamic simulations are rather similar. However, when looking at the dynamics of N2O emissions, large variability (36?ton?CO2e?day-1) is observed due to changes in the influent wastewater C/N ratio and temperature which would not be captured by a steady-state analysis (4.4?ton?CO2e?day-1). Finally, this study also shows the effect of changing the anaerobic digestion volume on the total GHG emissions. Decreasing the anaerobic digester volume resulted in a slight reduction in CH4 emissions (about 5%), but significantly decreased N2O emissions in the water line (by 14%). Biotechnol. Bioeng. 2012; 109: 28542863. (c) 2012 Wiley Periodicals, Inc.},
  author       = {Corominas, Lluis and Flores, Xavier and Snip, Laura and Vanrolleghem, Peter A.},
  issn         = {1097-0290},
  keyword      = {activated sludge modeling,anaerobic digestion,benchmarking,global,warming,model-based evaluation,nitrous oxide,plant-wide model,sustainability,whole plant modeling},
  language     = {eng},
  number       = {11},
  pages        = {2854--2863},
  publisher    = {John Wiley & Sons},
  series       = {Biotechnology and Bioengineering},
  title        = {Comparison of different modeling approaches to better evaluate greenhouse gas emissions from whole wastewater treatment plants},
  url          = {http://dx.doi.org/10.1002/bit.24544},
  volume       = {109},
  year         = {2012},
}