Advanced

Compact third-order multidimensional upwind scheme for Navier-Stokes simulations

Caraeni, Doru LU and Fuchs, Laszlo LU (2002) In Theoretical and Computational Fluid Dynamics 15(6). p.373-401
Abstract
A new compact third-order scheme for the solution of the unsteady Navier-Stokes equations on unstructured grids is proposed. The scheme is a cell-based algorithm, belonging to the class of Multidimensional Upwind schemes, which uses a finite-element reconstruction procedure over the cell to achieve third order (spatial) accuracy. Derivation of the scheme is given. The asymptotic accuracy, for steady/unsteady inviscid or viscous flow situations, is proved using numerical experiments. Those results are compared with the performances of a second-order multidimensional upwind scheme. The new compact high-order discretization proves to have excellent parallel scalability, which makes it well suited for large-scale computations on parallel... (More)
A new compact third-order scheme for the solution of the unsteady Navier-Stokes equations on unstructured grids is proposed. The scheme is a cell-based algorithm, belonging to the class of Multidimensional Upwind schemes, which uses a finite-element reconstruction procedure over the cell to achieve third order (spatial) accuracy. Derivation of the scheme is given. The asymptotic accuracy, for steady/unsteady inviscid or viscous flow situations, is proved using numerical experiments. Those results are compared with the performances of a second-order multidimensional upwind scheme. The new compact high-order discretization proves to have excellent parallel scalability, which makes it well suited for large-scale computations on parallel supercomputers. Our studies show clearly the advantages of the new compact third-order scheme compared with the classical second-order Multidimensional Upwind scheme. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Theoretical and Computational Fluid Dynamics
volume
15
issue
6
pages
373 - 401
publisher
Springer
external identifiers
  • wos:000177367800003
  • scopus:23044533362
ISSN
0935-4964
DOI
10.1007/s00162-002-0060-2
language
English
LU publication?
yes
id
9aa3dde1-e44d-4340-ac2b-27a92b83e105 (old id 331218)
date added to LUP
2007-08-13 14:08:15
date last changed
2017-12-10 04:34:42
@article{9aa3dde1-e44d-4340-ac2b-27a92b83e105,
  abstract     = {A new compact third-order scheme for the solution of the unsteady Navier-Stokes equations on unstructured grids is proposed. The scheme is a cell-based algorithm, belonging to the class of Multidimensional Upwind schemes, which uses a finite-element reconstruction procedure over the cell to achieve third order (spatial) accuracy. Derivation of the scheme is given. The asymptotic accuracy, for steady/unsteady inviscid or viscous flow situations, is proved using numerical experiments. Those results are compared with the performances of a second-order multidimensional upwind scheme. The new compact high-order discretization proves to have excellent parallel scalability, which makes it well suited for large-scale computations on parallel supercomputers. Our studies show clearly the advantages of the new compact third-order scheme compared with the classical second-order Multidimensional Upwind scheme.},
  author       = {Caraeni, Doru and Fuchs, Laszlo},
  issn         = {0935-4964},
  language     = {eng},
  number       = {6},
  pages        = {373--401},
  publisher    = {Springer},
  series       = {Theoretical and Computational Fluid Dynamics},
  title        = {Compact third-order multidimensional upwind scheme for Navier-Stokes simulations},
  url          = {http://dx.doi.org/10.1007/s00162-002-0060-2},
  volume       = {15},
  year         = {2002},
}