Compact third-order multidimensional upwind scheme for Navier-Stokes simulations
(2002) In Theoretical and Computational Fluid Dynamics 15(6). p.373-401- Abstract
- A new compact third-order scheme for the solution of the unsteady Navier-Stokes equations on unstructured grids is proposed. The scheme is a cell-based algorithm, belonging to the class of Multidimensional Upwind schemes, which uses a finite-element reconstruction procedure over the cell to achieve third order (spatial) accuracy. Derivation of the scheme is given. The asymptotic accuracy, for steady/unsteady inviscid or viscous flow situations, is proved using numerical experiments. Those results are compared with the performances of a second-order multidimensional upwind scheme. The new compact high-order discretization proves to have excellent parallel scalability, which makes it well suited for large-scale computations on parallel... (More)
- A new compact third-order scheme for the solution of the unsteady Navier-Stokes equations on unstructured grids is proposed. The scheme is a cell-based algorithm, belonging to the class of Multidimensional Upwind schemes, which uses a finite-element reconstruction procedure over the cell to achieve third order (spatial) accuracy. Derivation of the scheme is given. The asymptotic accuracy, for steady/unsteady inviscid or viscous flow situations, is proved using numerical experiments. Those results are compared with the performances of a second-order multidimensional upwind scheme. The new compact high-order discretization proves to have excellent parallel scalability, which makes it well suited for large-scale computations on parallel supercomputers. Our studies show clearly the advantages of the new compact third-order scheme compared with the classical second-order Multidimensional Upwind scheme. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/331218
- author
- Caraeni, Doru LU and Fuchs, Laszlo LU
- organization
- publishing date
- 2002
- type
- Contribution to journal
- publication status
- published
- subject
- in
- Theoretical and Computational Fluid Dynamics
- volume
- 15
- issue
- 6
- pages
- 373 - 401
- publisher
- Springer
- external identifiers
-
- wos:000177367800003
- scopus:23044533362
- ISSN
- 0935-4964
- DOI
- 10.1007/s00162-002-0060-2
- language
- English
- LU publication?
- yes
- id
- 9aa3dde1-e44d-4340-ac2b-27a92b83e105 (old id 331218)
- date added to LUP
- 2016-04-01 16:35:40
- date last changed
- 2022-01-28 20:45:00
@article{9aa3dde1-e44d-4340-ac2b-27a92b83e105, abstract = {{A new compact third-order scheme for the solution of the unsteady Navier-Stokes equations on unstructured grids is proposed. The scheme is a cell-based algorithm, belonging to the class of Multidimensional Upwind schemes, which uses a finite-element reconstruction procedure over the cell to achieve third order (spatial) accuracy. Derivation of the scheme is given. The asymptotic accuracy, for steady/unsteady inviscid or viscous flow situations, is proved using numerical experiments. Those results are compared with the performances of a second-order multidimensional upwind scheme. The new compact high-order discretization proves to have excellent parallel scalability, which makes it well suited for large-scale computations on parallel supercomputers. Our studies show clearly the advantages of the new compact third-order scheme compared with the classical second-order Multidimensional Upwind scheme.}}, author = {{Caraeni, Doru and Fuchs, Laszlo}}, issn = {{0935-4964}}, language = {{eng}}, number = {{6}}, pages = {{373--401}}, publisher = {{Springer}}, series = {{Theoretical and Computational Fluid Dynamics}}, title = {{Compact third-order multidimensional upwind scheme for Navier-Stokes simulations}}, url = {{http://dx.doi.org/10.1007/s00162-002-0060-2}}, doi = {{10.1007/s00162-002-0060-2}}, volume = {{15}}, year = {{2002}}, }