Structure study of Bi2.5Na0.5Ta2O9 and B2.5Nam-1.5NbmO3m+3 (m=2-4) by neutron powder diffraction and electron microscopy
(2002) In Journal of Solid State Chemistry 167(1). p.86-96- Abstract
- The crystal structures of Bi2.5Na0.5Ta2O9 and Bi2.5Nam-1.5NbmO3m+3 (m = 3,4) have been investigated.ysis of their neutron powder diffraction by the Rietveld anal patterns (lambda = 1.470 Angstrom). These compounds belong to the Aurivillius phase family and are built up by (Bi2O2)(2+) fluorite layers and (A(m-1)BnO(3m+1))(2-) (m = 2-4) pseudo-perovskite slabs. Bi2.5Na0.5Ta2O9 (m = 2) and Bi2.5Na2.5Nb4O15 (m = 4) crystallize in the orthorhombic space group A2(1)am, Z = 4, with lattice constants of a = 5.4763(4), b = 5.4478(4), c 24.9710 (15) and a = 5.5095(5), b = 5.4783(5), c = 40.553(3) Angstrom, respectively. Bi2.5Na1.5Nb3O12 (m = 3) has been refined in the orthorhombic space group B2cb, Z = 4, with the unit-cell parameters a = 5.5024(7),... (More)
- The crystal structures of Bi2.5Na0.5Ta2O9 and Bi2.5Nam-1.5NbmO3m+3 (m = 3,4) have been investigated.ysis of their neutron powder diffraction by the Rietveld anal patterns (lambda = 1.470 Angstrom). These compounds belong to the Aurivillius phase family and are built up by (Bi2O2)(2+) fluorite layers and (A(m-1)BnO(3m+1))(2-) (m = 2-4) pseudo-perovskite slabs. Bi2.5Na0.5Ta2O9 (m = 2) and Bi2.5Na2.5Nb4O15 (m = 4) crystallize in the orthorhombic space group A2(1)am, Z = 4, with lattice constants of a = 5.4763(4), b = 5.4478(4), c 24.9710 (15) and a = 5.5095(5), b = 5.4783(5), c = 40.553(3) Angstrom, respectively. Bi2.5Na1.5Nb3O12 (m = 3) has been refined in the orthorhombic space group B2cb, Z = 4, with the unit-cell parameters a = 5.5024(7), b = 5.4622(7), and c = 32.735(4) Angstrom. In comparison with its isostructural Nb analogue, the structure of Bi2.5Na0.5Ta2O9 is less distorted and bond valence sum calculations indicate that the Ta-O bonds are somewhat stronger than the Nb-O bonds. The cell parameters a and h increase with increasing m for the compounds Bi2.5Nam-1.5NbmO3m+3 (m = 2-4), causing a greater strain in the structure. Electron microscopy studies verify that the intergrowth of mixed perovskite layers, caused by stacking faults, also increases with increasing m. (C) 2002 Elsevier Science (USA). (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/329096
- author
- Borg, S ; Svensson, G and Bovin, Jan-Olov LU
- organization
- publishing date
- 2002
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- Aurivillius phases, electron microscopy, Bi2.5Na0.5Ta2O9, B1.5Na0.5Nb2O9, Bi2.5Na2.5Nb4O15, bi(2.5)Na(1.5)Nb(3)O(12), neutron powder diffraction
- in
- Journal of Solid State Chemistry
- volume
- 167
- issue
- 1
- pages
- 86 - 96
- publisher
- Elsevier
- external identifiers
-
- wos:000177915800011
- scopus:0036671168
- ISSN
- 0022-4596
- DOI
- 10.1006/jssc.2002.9623
- language
- English
- LU publication?
- yes
- additional info
- The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Polymer and Materials Chemistry (LTH) (011001041)
- id
- 33a459cf-3c93-4de9-9c8a-0dcb716af007 (old id 329096)
- date added to LUP
- 2016-04-01 15:39:13
- date last changed
- 2022-01-28 06:22:08
@article{33a459cf-3c93-4de9-9c8a-0dcb716af007, abstract = {{The crystal structures of Bi2.5Na0.5Ta2O9 and Bi2.5Nam-1.5NbmO3m+3 (m = 3,4) have been investigated.ysis of their neutron powder diffraction by the Rietveld anal patterns (lambda = 1.470 Angstrom). These compounds belong to the Aurivillius phase family and are built up by (Bi2O2)(2+) fluorite layers and (A(m-1)BnO(3m+1))(2-) (m = 2-4) pseudo-perovskite slabs. Bi2.5Na0.5Ta2O9 (m = 2) and Bi2.5Na2.5Nb4O15 (m = 4) crystallize in the orthorhombic space group A2(1)am, Z = 4, with lattice constants of a = 5.4763(4), b = 5.4478(4), c 24.9710 (15) and a = 5.5095(5), b = 5.4783(5), c = 40.553(3) Angstrom, respectively. Bi2.5Na1.5Nb3O12 (m = 3) has been refined in the orthorhombic space group B2cb, Z = 4, with the unit-cell parameters a = 5.5024(7), b = 5.4622(7), and c = 32.735(4) Angstrom. In comparison with its isostructural Nb analogue, the structure of Bi2.5Na0.5Ta2O9 is less distorted and bond valence sum calculations indicate that the Ta-O bonds are somewhat stronger than the Nb-O bonds. The cell parameters a and h increase with increasing m for the compounds Bi2.5Nam-1.5NbmO3m+3 (m = 2-4), causing a greater strain in the structure. Electron microscopy studies verify that the intergrowth of mixed perovskite layers, caused by stacking faults, also increases with increasing m. (C) 2002 Elsevier Science (USA).}}, author = {{Borg, S and Svensson, G and Bovin, Jan-Olov}}, issn = {{0022-4596}}, keywords = {{Aurivillius phases; electron microscopy; Bi2.5Na0.5Ta2O9; B1.5Na0.5Nb2O9; Bi2.5Na2.5Nb4O15; bi(2.5)Na(1.5)Nb(3)O(12); neutron powder diffraction}}, language = {{eng}}, number = {{1}}, pages = {{86--96}}, publisher = {{Elsevier}}, series = {{Journal of Solid State Chemistry}}, title = {{Structure study of Bi2.5Na0.5Ta2O9 and B2.5Nam-1.5NbmO3m+3 (m=2-4) by neutron powder diffraction and electron microscopy}}, url = {{http://dx.doi.org/10.1006/jssc.2002.9623}}, doi = {{10.1006/jssc.2002.9623}}, volume = {{167}}, year = {{2002}}, }