Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Mechanisms of Brain Damage Following Focal Cerebral Ischemia: Changes in Ion Homeostasis and the Importance of Free Radical Formation

Gidö, Gunilla LU (1998)
Abstract
In this thesis mechanisms of neuronal damage were investigated in an experimental stroke model i.e focal ischemia. The influence of SD-induced calcium transients on neuronal damage were studied in animals with reduced energy supply. The influence of bioenergetic failure on K+e concentration and Ca2+e homeostasis were also investigated in transient focal ischemia. Moreover, the free radical formation was assessed in focal ischemia/reperfusion, as was the scavenging effect of PBN. Animals with a reduction in energy supply showed prolonged SD-induced calcium transients. These prolonged calcium lead occasionally to mild neuronal damage. Similar SDs are recorded in the ischemic penumbra in focal ischemia, and are probably caused by decreased... (More)
In this thesis mechanisms of neuronal damage were investigated in an experimental stroke model i.e focal ischemia. The influence of SD-induced calcium transients on neuronal damage were studied in animals with reduced energy supply. The influence of bioenergetic failure on K+e concentration and Ca2+e homeostasis were also investigated in transient focal ischemia. Moreover, the free radical formation was assessed in focal ischemia/reperfusion, as was the scavenging effect of PBN. Animals with a reduction in energy supply showed prolonged SD-induced calcium transients. These prolonged calcium lead occasionally to mild neuronal damage. Similar SDs are recorded in the ischemic penumbra in focal ischemia, and are probably caused by decreased energy supply. The second bioenrgetic failure in the ischemic focus as recorded in K+e concentration increase occurs at 4-6 h of reperfusion after 2 h MCAO. Treatment with PBN delays or prevent the late increase in K+e level. Recordings of Ca2+e and total calcium content in focal ischemia /reperfusion showed disturbed calcium homeostasis in the cortical core and penumbral zone. Free radical formation were enhanced in the recirculation phase after 2 h MCAO, and treatment with PBN did not reduce these free radical formation. It is concluded that the cellular calcium load in energy compromised brain tissue is tolerated without extensive neuronal damage. This indicates that other mechanisms than only exaggerated calcium transients lead to development of the infarct in focal ischemia. Recordings of Ca2+e and total calcium content in focal ischemia /reperfusion suggest that the tissue is irreversibly damaged after 6 h of recirculation. The lack of an effect of BPN treatment despite its neuroprotective effect may suggest that PBN is effective in small compartments e.g the endothelium. (Less)
Abstract (Swedish)
Popular Abstract in Swedish

Svensk sammanfattning



Slaganfall (stroke), hjärtstillestånd eller överdosering av insulin är tillstånd som leder till en minskning av syre- och/eller glukos till hjärnvävnaden. Då tillförseln av glukos och syrgas minskar, kan cellerna inte längre upprätthålla en normal energiproduktion. Eftersom en stor del av energin går åt till bevara den spänning som finns över cellmembranet (membranpotentialen), vilken reglerar cellens yttre och inre jonkoncentrationer, medför en brist på energi en störning i denna funktion. Vid extremt låga energinivåer kollapsar denna funktion helt, man säger att cellen depolariserar. De joner (t.ex.K+= kalium ) som finns i hög koncentration inne i cellen... (More)
Popular Abstract in Swedish

Svensk sammanfattning



Slaganfall (stroke), hjärtstillestånd eller överdosering av insulin är tillstånd som leder till en minskning av syre- och/eller glukos till hjärnvävnaden. Då tillförseln av glukos och syrgas minskar, kan cellerna inte längre upprätthålla en normal energiproduktion. Eftersom en stor del av energin går åt till bevara den spänning som finns över cellmembranet (membranpotentialen), vilken reglerar cellens yttre och inre jonkoncentrationer, medför en brist på energi en störning i denna funktion. Vid extremt låga energinivåer kollapsar denna funktion helt, man säger att cellen depolariserar. De joner (t.ex.K+= kalium ) som finns i hög koncentration inne i cellen (intracellulärt) flödar ut, medan de joner (t.ex Na+= natrium, Cl-= klorid, Ca2+= kalcium) som finns utanför cellen (extracellulärt) flödar in. Det anses att en ökning av intracellulärt Ca2+stimulerar faktorer vilka leder till att hjärncellerna dör.



Vid stroke bildas toxiska syrgasföreningar, sk. fria radikaler i hjärnans celler vilka kan bidra till att förvärra hjärnskadan. De fria radikalerna bildas speciellt i stor mängd när blodflödet till hjärnan återkommer efter en period av ischemi.



Syftet med denna studie har varit att på olika sätt reducera energitillförseln till råtthjärnan och på kemisk väg få hjärncellernas cellmembran att övergående depolarisera (genom att utlösa s.k. spreading depression*). På detta sätt är det möjligt att kartlägga hur länge cellen kan tolerera en förhöjd nivå av intracellulärt Ca2+ utan att det leder till celldöd. Dessutom ville vi mäta jonbalansen, kalciumomsättningen och bildningen av fria radikaler vid stroke. För att studera dessa tillsånd finns väletablerade djurmodeller dvs. fokal ischemi vid stroke, global ischemi vid hjärtstillestånd och hypoglukemi vid en överdos av insulin.



Resultaten antyder att det inte enbart är den förhöjda intracellulära Ca2+ nivån under lång tid (upp till ca 40 min), som leder till att hjärncellerna dör. I situationer där celldöd förekommer, t.ex. vid fokal hjärnischemi, kan man anta att en ytterligare reducering i energitillförseln föreligger, och att döende celler i infarktens s.k. fokus frisätter substanser som skadar de celler som fortfarande är vitala. Mätningar av calciummetabolismen vid fokal ischemi tyder på att 6 timmar efter 2 h ischemi är cellerna så skadade att jonbalansen ej längre kan upprätthållas. Behandling med en fri radikalhämmare, PBN, tycks minska eller senarelägga de störningar i jonbalansen som slutligen leder till hjärninfarkt. Emellertid ledde inte PBN-behandling till en generell minskning i produktionen av fria radikaler vid fokal ischemi, trots att BPN-behandling visats ha goda effekter på hjärninfarkten.



* Spreading depression = En dämpning av den elektriska aktiviteten, vilken sprids över hjärnytan. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Docent Hillered, Lars
organization
publishing date
type
Thesis
publication status
published
subject
keywords
PBN, free radicals, potassium, extracellular calcium, neuronal damage, energy-depletion, hypoglycemia, Cerebral focal ischemia, spreading depression, Neurology, neuropsychology, neurophysiology, Neurologi, neuropsykologi, neurofysiologi
pages
140 pages
publisher
Lab. for Exp. Brain Res. University Hospital, SE-221 85 Lund, Sweden
defense location
Segerfalksalen Wallenberg Neuroscience Center
defense date
1998-05-19 10:15:00
external identifiers
  • other:ISRN: LUMEDW/MEXB-1017-SE
ISBN
91-628-2969-6
language
English
LU publication?
yes
additional info
The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Experimental Brain Research (0131000120), Laboratory for Experimental Brain Research (013041000)
id
071f741d-408b-4d16-ad27-52a2c454550d (old id 38593)
date added to LUP
2016-04-04 11:01:56
date last changed
2018-11-21 21:02:14
@phdthesis{071f741d-408b-4d16-ad27-52a2c454550d,
  abstract     = {{In this thesis mechanisms of neuronal damage were investigated in an experimental stroke model i.e focal ischemia. The influence of SD-induced calcium transients on neuronal damage were studied in animals with reduced energy supply. The influence of bioenergetic failure on K+e concentration and Ca2+e homeostasis were also investigated in transient focal ischemia. Moreover, the free radical formation was assessed in focal ischemia/reperfusion, as was the scavenging effect of PBN. Animals with a reduction in energy supply showed prolonged SD-induced calcium transients. These prolonged calcium lead occasionally to mild neuronal damage. Similar SDs are recorded in the ischemic penumbra in focal ischemia, and are probably caused by decreased energy supply. The second bioenrgetic failure in the ischemic focus as recorded in K+e concentration increase occurs at 4-6 h of reperfusion after 2 h MCAO. Treatment with PBN delays or prevent the late increase in K+e level. Recordings of Ca2+e and total calcium content in focal ischemia /reperfusion showed disturbed calcium homeostasis in the cortical core and penumbral zone. Free radical formation were enhanced in the recirculation phase after 2 h MCAO, and treatment with PBN did not reduce these free radical formation. It is concluded that the cellular calcium load in energy compromised brain tissue is tolerated without extensive neuronal damage. This indicates that other mechanisms than only exaggerated calcium transients lead to development of the infarct in focal ischemia. Recordings of Ca2+e and total calcium content in focal ischemia /reperfusion suggest that the tissue is irreversibly damaged after 6 h of recirculation. The lack of an effect of BPN treatment despite its neuroprotective effect may suggest that PBN is effective in small compartments e.g the endothelium.}},
  author       = {{Gidö, Gunilla}},
  isbn         = {{91-628-2969-6}},
  keywords     = {{PBN; free radicals; potassium; extracellular calcium; neuronal damage; energy-depletion; hypoglycemia; Cerebral focal ischemia; spreading depression; Neurology; neuropsychology; neurophysiology; Neurologi; neuropsykologi; neurofysiologi}},
  language     = {{eng}},
  publisher    = {{Lab. for Exp. Brain Res. University Hospital, SE-221 85 Lund, Sweden}},
  school       = {{Lund University}},
  title        = {{Mechanisms of Brain Damage Following Focal Cerebral Ischemia: Changes in Ion Homeostasis and the Importance of Free Radical Formation}},
  year         = {{1998}},
}