Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

In-vivo effects of endothelin-1 and ETA receptor blockade on arterial, venous and capillary functions in skeletal muscle

Ekelund, Ulf LU orcid ; Albert, U ; Edvinsson, Lars LU and Mellander, Stefan LU (1993) In Acta Physiologica Scandinavica 148(3). p.273-283
Abstract
Results from in vitro studies have indicated that endothelin-1 is a main candidate for endothelium-derived contracting factors. The aim of this in vivo study was to describe in quantitative terms the effects of endothelin-1 (ET-1), and of ETA receptor blockade, on vascular tone (resistance) in large-bore arterial resistance vessels (> 25 microns), small arterioles (< 25 microns) and the veins, as well as on capillary pressure and fluid exchange in cat gastrocnemius muscle. Endothelin-1 (100-1600 ng kg-1 min-1, i.a.) elicited, after an initial transient dilation, a strong dose-dependent constrictor response in all three consecutive vascular sections, yet with a preferential action on the small arterioles and the veins. The... (More)
Results from in vitro studies have indicated that endothelin-1 is a main candidate for endothelium-derived contracting factors. The aim of this in vivo study was to describe in quantitative terms the effects of endothelin-1 (ET-1), and of ETA receptor blockade, on vascular tone (resistance) in large-bore arterial resistance vessels (> 25 microns), small arterioles (< 25 microns) and the veins, as well as on capillary pressure and fluid exchange in cat gastrocnemius muscle. Endothelin-1 (100-1600 ng kg-1 min-1, i.a.) elicited, after an initial transient dilation, a strong dose-dependent constrictor response in all three consecutive vascular sections, yet with a preferential action on the small arterioles and the veins. The vasoconstriction developed very slowly over about 1 h and was also long-lasting after cessation of the infusion. Our main quantitative analysis refers to effects elicited by 20 min long i.a. infusions of ET-1 at a dose of 400 ng kg-1 min-1. At the end of this period, the peptide caused, on average, a three-fold increase in total regional vascular resistance, in turn explained by a 70% increase in large-bore arterial resistance, a 280% increase in arteriolar resistance and a 220% increase in venous resistance. The latter effect was also manifested as a pronounced capacitance response, and as a decrease in the pre- to post-capillary resistance ratio leading regularly to a rise in capillary pressure, net transcapillary fluid filtration and oedema formation which is unusual for a vasoconstrictor. The new specific competitive ETA receptor antagonist FR 139317 was found to be fully effective in vivo, insofar as it abolished the constrictor response to endothelin-1. ETA receptor blockade, or administration of phosphoramidon, an inhibitor of ET-1 production, did not influence the level of basal vascular tone, indicating no significant endogenous release of ET-1 under resting conditions. This contrasts to the established pronounced endogenous release of endothelium-derived nitric oxide. Finally, vascular myogenic regulation was found not to be mediated by ET-1. The results, taken together, suggest a possible role of ET-1 in long-term, rather than short-term, regulation of vascular tone in vivo, perhaps especially during pathophysiological conditions. (Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Acta Physiologica Scandinavica
volume
148
issue
3
pages
273 - 283
publisher
Wiley-Blackwell
external identifiers
  • pmid:8213182
  • scopus:0027165441
ISSN
0001-6772
language
English
LU publication?
yes
id
385dbc74-0d6d-4f08-ad02-78aef11f6c88 (old id 1107141)
date added to LUP
2016-04-01 16:34:25
date last changed
2024-01-11 10:37:17
@article{385dbc74-0d6d-4f08-ad02-78aef11f6c88,
  abstract     = {{Results from in vitro studies have indicated that endothelin-1 is a main candidate for endothelium-derived contracting factors. The aim of this in vivo study was to describe in quantitative terms the effects of endothelin-1 (ET-1), and of ETA receptor blockade, on vascular tone (resistance) in large-bore arterial resistance vessels (&gt; 25 microns), small arterioles (&lt; 25 microns) and the veins, as well as on capillary pressure and fluid exchange in cat gastrocnemius muscle. Endothelin-1 (100-1600 ng kg-1 min-1, i.a.) elicited, after an initial transient dilation, a strong dose-dependent constrictor response in all three consecutive vascular sections, yet with a preferential action on the small arterioles and the veins. The vasoconstriction developed very slowly over about 1 h and was also long-lasting after cessation of the infusion. Our main quantitative analysis refers to effects elicited by 20 min long i.a. infusions of ET-1 at a dose of 400 ng kg-1 min-1. At the end of this period, the peptide caused, on average, a three-fold increase in total regional vascular resistance, in turn explained by a 70% increase in large-bore arterial resistance, a 280% increase in arteriolar resistance and a 220% increase in venous resistance. The latter effect was also manifested as a pronounced capacitance response, and as a decrease in the pre- to post-capillary resistance ratio leading regularly to a rise in capillary pressure, net transcapillary fluid filtration and oedema formation which is unusual for a vasoconstrictor. The new specific competitive ETA receptor antagonist FR 139317 was found to be fully effective in vivo, insofar as it abolished the constrictor response to endothelin-1. ETA receptor blockade, or administration of phosphoramidon, an inhibitor of ET-1 production, did not influence the level of basal vascular tone, indicating no significant endogenous release of ET-1 under resting conditions. This contrasts to the established pronounced endogenous release of endothelium-derived nitric oxide. Finally, vascular myogenic regulation was found not to be mediated by ET-1. The results, taken together, suggest a possible role of ET-1 in long-term, rather than short-term, regulation of vascular tone in vivo, perhaps especially during pathophysiological conditions.}},
  author       = {{Ekelund, Ulf and Albert, U and Edvinsson, Lars and Mellander, Stefan}},
  issn         = {{0001-6772}},
  language     = {{eng}},
  number       = {{3}},
  pages        = {{273--283}},
  publisher    = {{Wiley-Blackwell}},
  series       = {{Acta Physiologica Scandinavica}},
  title        = {{In-vivo effects of endothelin-1 and ETA receptor blockade on arterial, venous and capillary functions in skeletal muscle}},
  volume       = {{148}},
  year         = {{1993}},
}