Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Exploring different thermoplastics from lignocellulosic building blocks and monomers

Bonjour, Olivier LU (2023)
Abstract
The need to replace conventional fossil-based plastics is becoming more imperative. As climate change is more visibly affecting our society, employing non-sustainable resources to produce plastics is aggravating the problem. Moreover, these long-lasting, non-recycled wastes end up in our oceans, creating an intrinsic environmental pollution problem. Researching new biobased building blocks to enable the production of plastics with better properties than conventional plastics has been a long and evolving process. Such bioadvantage strategy usually f ocuses on designing rigid monomers to
improve the thermal and mechanical properties of the polymers. Another possibility is to introduce polar functions to obtain better physical properties.... (More)
The need to replace conventional fossil-based plastics is becoming more imperative. As climate change is more visibly affecting our society, employing non-sustainable resources to produce plastics is aggravating the problem. Moreover, these long-lasting, non-recycled wastes end up in our oceans, creating an intrinsic environmental pollution problem. Researching new biobased building blocks to enable the production of plastics with better properties than conventional plastics has been a long and evolving process. Such bioadvantage strategy usually f ocuses on designing rigid monomers to
improve the thermal and mechanical properties of the polymers. Another possibility is to introduce polar functions to obtain better physical properties. This thesis focuses on the design of several new lignocellulosic monomers and building blocks to produce thermoplastics. The two strategies mentioned (rigidity and polarity) were explored and are reported here.
In Paper I, isosorbide-based methacrylate monomers with varying pendant alkanoyl chains were synthesized, and subsequently polymerized. The resulting polymers showed thermal properties depending on the length of the pendant alkanoyl chain. Shorter chains yielded amorphous materials,
while longer chains af f orded semi-crystalline polymers, even showing liquid crystalline behavior in some cases. In Paper II, a rigid spirocyclic diol derived from citric acid was synthesized and used to produce polycarbonates of different molecular weights. The thermal properties of the higher molecular
weight were significantly better. In Paper III, the spirocyclic diol from Paper II was, alongside two other spirocyclic diols derived from citric acid, (meth)acrylated to obtain rigid di(meth)acrylate monomers of different structures. These monomers were polymerized by thiol-Michael polymerization with dithiols of various rigidity, affording a library of polymers. Their thermal properties were successfully correlated to their chemical structure. Additionally, the ketals units were successfully cleaved in a mixture of aqueous acid and acetone, opening the way for potential chemical recycling. In Paper IV, besides using rigid structures, polar groups such as nitrile functions were introduced in lignin-inspired polymers, leading to polymers and copolymers with improved thermal properties, as well as solvent resistance. In Paper V, using a similar strategy, a bis-vanillin monomer containing nitrile functions was employed to produce polyesters with improved thermal properties. (Less)
Abstract (Swedish)
Behovet av att ersätta konventionell fossilbaserad plast blir allt viktigare. Eftersom klimatförändringarna mer synligt påverkar vårt samhälle, förvärrar det problemet att använda icke-hållbara resurser för att tillverka plast. Dessutom hamnar dessa långvariga, icke-återvunna avfall i våra hav, vilket skapar ett inneboende miljöföroreningsproblem. Att forska om nya biobaserade byggstenar för att möjliggöra produktion av plast med bättre egenskaper än konventionell plast har varit en lång och utvecklande process. En sådan bioadvantage-strategi fokuserar vanligtvis på att designa stela monomerer till förbättra de termiska och mekaniska egenskaperna hos polymererna. En annan möjlighet är att införa polära funktioner för att få bättre... (More)
Behovet av att ersätta konventionell fossilbaserad plast blir allt viktigare. Eftersom klimatförändringarna mer synligt påverkar vårt samhälle, förvärrar det problemet att använda icke-hållbara resurser för att tillverka plast. Dessutom hamnar dessa långvariga, icke-återvunna avfall i våra hav, vilket skapar ett inneboende miljöföroreningsproblem. Att forska om nya biobaserade byggstenar för att möjliggöra produktion av plast med bättre egenskaper än konventionell plast har varit en lång och utvecklande process. En sådan bioadvantage-strategi fokuserar vanligtvis på att designa stela monomerer till förbättra de termiska och mekaniska egenskaperna hos polymererna. En annan möjlighet är att införa polära funktioner för att få bättre fysikaliska egenskaper. Detta examensarbete fokuserar på designen av flera nya lignocellulosamonomerer och byggstenar för framställning av termoplaster. De två nämnda strategierna (styvhet och polaritet) undersöktes och redovisas här.
I Paper I syntetiserades isosorbidbaserade metakrylatmonomerer med varierande vidhängande alkanoylkedjor och polymeriserades därefter. De resulterande polymererna visade termiska egenskaper beroende på längden på den vidhängande alkanoylkedjan. Kortare kedjor gav amorfa material, medan längre kedjor gav halvkristallina polymerer, uppvisade även flytande kristallint beteende i vissa fall. I Paper II syntetiserades en stel spirocyklisk diol härledd från citronsyra och användes för att framställa polykarbonater med olika molekylvikter. De termiska egenskaperna hos den högre molekylen vikten var betydligt bättre. I Paper III var den spirocykliska diolen från Paper II, tillsammans med två andra spirocykliska dioler härledda från citronsyra, (met)akrylat för att erhålla stela di(met)akrylatmonomerer med olika strukturer. Dessa monomerer polymeriserades genom tiol-Michael-polymerisation med ditioler av olika styvhet, vilket gav ett bibliotek av polymerer. Deras termiska egenskaper var framgångsrikt korrelerade till deras kemiska struktur. Dessutom klyvdes ketalenheterna framgångsrikt i en blandning av vattenhaltig syra och aceton, vilket öppnade vägen för potentiell kemisk återvinning. I Paper IV, förutom att använda stela strukturer, introducerades polära grupper såsom nitrilfunktioner i lignininspirerade polymerer, vilket ledde till polymerer och sampolymerer med förbättrade termiska egenskaper, såväl som lösningsmedelsbeständighet. I Paper V, med användning av en liknande strategi, användes en bis-vanillin monomer innehållande nitrilfunktioner för att framställa polyestrar med förbättrade termiska egenskaper. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Prof. Odelius, Karin, KTH Royal Institute of Technology, Sweden.
organization
alternative title
Utforska olika termoplaster från lignocellulosa byggstenar och monomerer
publishing date
type
Thesis
publication status
published
subject
keywords
Biobased plastics, Biobased polymers, Polymethacrylates, Polycarbonates, Polyesters, Poly(beta-thioether ester)s, Chemical recycling, Biobased plastics, Biobased polymers, Polycarbonates, Polymethacrylates, Poly(beta-thioether ester)s, Polyesters, Chemical recycling
pages
79 pages
publisher
Lund University
defense location
Lecture Hall KC:A, Kemicentrum, Naturvetarvägen 14, Faculty of Engineering LTH, Lund University, Lund. The dissertation will be live streamed, but part of the premises is to be excluded from the live stream. Zoom: https://lu-se.zoom.us/j/63942146372
defense date
2023-09-29 09:00:00
ISBN
978-91-7422-968-4
978-91-7422-969-1
project
Exploring different thermoplastics from lignocellulosic building blocks and monomers
language
English
LU publication?
yes
id
39604a85-0838-4a29-befa-f4627b15deaf
date added to LUP
2023-08-16 12:56:18
date last changed
2023-09-06 09:23:16
@phdthesis{39604a85-0838-4a29-befa-f4627b15deaf,
  abstract     = {{The need to replace conventional fossil-based plastics is becoming more imperative. As climate change is more visibly affecting our society, employing non-sustainable resources to produce plastics is aggravating the problem. Moreover, these long-lasting, non-recycled wastes end up in our oceans, creating an intrinsic environmental pollution problem. Researching new biobased building blocks to enable the production of plastics with better properties than conventional plastics has been a long and evolving process. Such bioadvantage strategy usually f ocuses on designing rigid monomers to<br/>improve the thermal and mechanical properties of the polymers. Another possibility is to introduce polar functions to obtain better physical properties. This thesis focuses on the design of several new lignocellulosic monomers and building blocks to produce thermoplastics. The two strategies mentioned (rigidity and polarity) were explored and are reported here.<br/>In Paper I, isosorbide-based methacrylate monomers with varying pendant alkanoyl chains were synthesized, and subsequently polymerized. The resulting polymers showed thermal properties depending on the length of the pendant alkanoyl chain. Shorter chains yielded amorphous materials,<br/>while longer chains af f orded semi-crystalline polymers, even showing liquid crystalline behavior in some cases. In Paper II, a rigid spirocyclic diol derived from citric acid was synthesized and used to produce polycarbonates of different molecular weights. The thermal properties of the higher molecular<br/>weight were significantly better. In Paper III, the spirocyclic diol from Paper II was, alongside two other spirocyclic diols derived from citric acid, (meth)acrylated to obtain rigid di(meth)acrylate monomers of different structures. These monomers were polymerized by thiol-Michael polymerization with dithiols of various rigidity, affording a library of polymers. Their thermal properties were successfully correlated to their chemical structure. Additionally, the ketals units were successfully cleaved in a mixture of aqueous acid and acetone, opening the way for potential chemical recycling. In Paper IV, besides using rigid structures, polar groups such as nitrile functions were introduced in lignin-inspired polymers, leading to polymers and copolymers with improved thermal properties, as well as solvent resistance. In Paper V, using a similar strategy, a bis-vanillin monomer containing nitrile functions was employed to produce polyesters with improved thermal properties.}},
  author       = {{Bonjour, Olivier}},
  isbn         = {{978-91-7422-968-4}},
  keywords     = {{Biobased plastics; Biobased polymers; Polymethacrylates; Polycarbonates; Polyesters; Poly(beta-thioether ester)s; Chemical recycling; Biobased plastics; Biobased polymers; Polycarbonates; Polymethacrylates; Poly(beta-thioether ester)s; Polyesters; Chemical recycling}},
  language     = {{eng}},
  month        = {{09}},
  publisher    = {{Lund University}},
  school       = {{Lund University}},
  title        = {{Exploring different thermoplastics from lignocellulosic building blocks and monomers}},
  url          = {{https://lup.lub.lu.se/search/files/155624775/Olivier_Bonjour_WEBB.pdf}},
  year         = {{2023}},
}