Characterization and assembly of a GFP-tagged cylindriform silk into hexameric complexes.
(2014) In Biopolymers 101(4). p.378-390- Abstract
- Spider silk has been studied extensively for its attractive mechanical properties and potential applications in medicine and industry. The production of spider silk, however, has been lagging behind for lack of suitable systems. Our approach focuses on solving the production of spider silk by designing, expressing, purifying and characterizing the silk from cylindriform glands. We show that the cylindriform silk protein, in contrast to the commonly used dragline silk protein, is fully folded and stable in solution. With the help of GFP as a fusion tag we enhanced the expression of the silk protein in Escherichia coli and could optimize the downstream processing. Secondary structures analysis by circular dichroism and FTIR shows that the... (More)
- Spider silk has been studied extensively for its attractive mechanical properties and potential applications in medicine and industry. The production of spider silk, however, has been lagging behind for lack of suitable systems. Our approach focuses on solving the production of spider silk by designing, expressing, purifying and characterizing the silk from cylindriform glands. We show that the cylindriform silk protein, in contrast to the commonly used dragline silk protein, is fully folded and stable in solution. With the help of GFP as a fusion tag we enhanced the expression of the silk protein in Escherichia coli and could optimize the downstream processing. Secondary structures analysis by circular dichroism and FTIR shows that the GFP-Silk fusion protein is predominantly α-helical, and that pH can trigger a α- to β-transition resulting in aggregation. Structural analysis by small angle x-ray scattering suggests that the GFP-Silk exists in the form of a hexamer in solution. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/4005559
- author
- Öster, Carl
LU
; Svensson Bonde, Johan
LU
; Bülow, Leif LU and Dicko, Cedric LU
- organization
- publishing date
- 2014
- type
- Contribution to journal
- publication status
- published
- subject
- in
- Biopolymers
- volume
- 101
- issue
- 4
- pages
- 378 - 390
- publisher
- John Wiley & Sons Inc.
- external identifiers
-
- pmid:23955662
- wos:000336575300008
- scopus:84897681543
- pmid:23955662
- ISSN
- 0006-3525
- DOI
- 10.1002/bip.22374
- language
- English
- LU publication?
- yes
- id
- f23562af-ef70-446b-9220-5bc82d809d50 (old id 4005559)
- date added to LUP
- 2016-04-01 09:56:01
- date last changed
- 2025-01-14 01:37:35
@article{f23562af-ef70-446b-9220-5bc82d809d50, abstract = {{Spider silk has been studied extensively for its attractive mechanical properties and potential applications in medicine and industry. The production of spider silk, however, has been lagging behind for lack of suitable systems. Our approach focuses on solving the production of spider silk by designing, expressing, purifying and characterizing the silk from cylindriform glands. We show that the cylindriform silk protein, in contrast to the commonly used dragline silk protein, is fully folded and stable in solution. With the help of GFP as a fusion tag we enhanced the expression of the silk protein in Escherichia coli and could optimize the downstream processing. Secondary structures analysis by circular dichroism and FTIR shows that the GFP-Silk fusion protein is predominantly α-helical, and that pH can trigger a α- to β-transition resulting in aggregation. Structural analysis by small angle x-ray scattering suggests that the GFP-Silk exists in the form of a hexamer in solution.}}, author = {{Öster, Carl and Svensson Bonde, Johan and Bülow, Leif and Dicko, Cedric}}, issn = {{0006-3525}}, language = {{eng}}, number = {{4}}, pages = {{378--390}}, publisher = {{John Wiley & Sons Inc.}}, series = {{Biopolymers}}, title = {{Characterization and assembly of a GFP-tagged cylindriform silk into hexameric complexes.}}, url = {{http://dx.doi.org/10.1002/bip.22374}}, doi = {{10.1002/bip.22374}}, volume = {{101}}, year = {{2014}}, }