Advanced

Green's function for a spherical dielectric discontinuity and its application to simulation

Linse, Per LU and Lue, Leo (2014) In Journal of Chemical Physics 140(4).
Abstract
We present rapidly convergent expressions for the Green's function of the Poisson equation for spherically symmetric systems where the dielectric constant varies discontinuously in the radial direction. These expressions are used in Monte Carlo simulations of various electrolyte systems, and their efficiency is assessed. With only the leading term of the expansion included, a precision of the polarization energy of 0.01 kJ mol(-1) or better was achieved, which is smaller than the statistical uncertainty of a typical simulation. The inclusion of the dielectric inhomogeneity leads to a 2.5-fold increase of the computational effort, which is modest for this type of model. The simulations are performed on six types of systems having either (i)... (More)
We present rapidly convergent expressions for the Green's function of the Poisson equation for spherically symmetric systems where the dielectric constant varies discontinuously in the radial direction. These expressions are used in Monte Carlo simulations of various electrolyte systems, and their efficiency is assessed. With only the leading term of the expansion included, a precision of the polarization energy of 0.01 kJ mol(-1) or better was achieved, which is smaller than the statistical uncertainty of a typical simulation. The inclusion of the dielectric inhomogeneity leads to a 2.5-fold increase of the computational effort, which is modest for this type of model. The simulations are performed on six types of systems having either (i) a uniform surface charge distribution, (ii) a uniform volume charge distribution, or (iii) mobile ions, which were neutralized by mobile counterions. The ion density distributions are investigated for different dielectric conditions. These spatial distributions are discussed in terms of the importance of (i) the direct mean-field Coulomb interaction, (ii) the surface charge polarization at the dielectric discontinuity, and/or (iii) the change in the attractive Coulomb correlations. (C) 2014 AIP Publishing LLC. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Chemical Physics
volume
140
issue
4
publisher
American Institute of Physics
external identifiers
  • wos:000331211700089
  • pmid:25669579
  • scopus:84902144816
ISSN
0021-9606
DOI
10.1063/1.4862148
language
English
LU publication?
yes
id
0171cab4-37e5-4e30-bbb2-b6b301907813 (old id 4376521)
date added to LUP
2014-04-14 13:05:59
date last changed
2017-01-01 03:55:41
@article{0171cab4-37e5-4e30-bbb2-b6b301907813,
  abstract     = {We present rapidly convergent expressions for the Green's function of the Poisson equation for spherically symmetric systems where the dielectric constant varies discontinuously in the radial direction. These expressions are used in Monte Carlo simulations of various electrolyte systems, and their efficiency is assessed. With only the leading term of the expansion included, a precision of the polarization energy of 0.01 kJ mol(-1) or better was achieved, which is smaller than the statistical uncertainty of a typical simulation. The inclusion of the dielectric inhomogeneity leads to a 2.5-fold increase of the computational effort, which is modest for this type of model. The simulations are performed on six types of systems having either (i) a uniform surface charge distribution, (ii) a uniform volume charge distribution, or (iii) mobile ions, which were neutralized by mobile counterions. The ion density distributions are investigated for different dielectric conditions. These spatial distributions are discussed in terms of the importance of (i) the direct mean-field Coulomb interaction, (ii) the surface charge polarization at the dielectric discontinuity, and/or (iii) the change in the attractive Coulomb correlations. (C) 2014 AIP Publishing LLC.},
  articleno    = {044903},
  author       = {Linse, Per and Lue, Leo},
  issn         = {0021-9606},
  language     = {eng},
  number       = {4},
  publisher    = {American Institute of Physics},
  series       = {Journal of Chemical Physics},
  title        = {Green's function for a spherical dielectric discontinuity and its application to simulation},
  url          = {http://dx.doi.org/10.1063/1.4862148},
  volume       = {140},
  year         = {2014},
}