Advanced

The interaction between predation risk and food ration on behavior and morphology of Eurasian perch

Svanbäck, Richard; Zha, Yinghua; Brönmark, Christer LU and Johansson, Frank (2017) In Ecology and Evolution 7(20). p.8567-8577
Abstract

The risk of both predation and food level has been shown to affect phenotypic development of organisms. However, these two factors also influence animal behavior that in turn may influence phenotypic development. Hence, it might be difficult to disentangle the behavioral effect from the predator or resource-level effects. This is because the presence of predators and high resource levels usually results in a lower activity, which in turn affects energy expenditure that is used for development and growth. It is therefore necessary to study how behavior interacts with changes in body shape with regard to resource density and predators. Here, we use the classic predator-induced morphological defense in fish to study the interaction between... (More)

The risk of both predation and food level has been shown to affect phenotypic development of organisms. However, these two factors also influence animal behavior that in turn may influence phenotypic development. Hence, it might be difficult to disentangle the behavioral effect from the predator or resource-level effects. This is because the presence of predators and high resource levels usually results in a lower activity, which in turn affects energy expenditure that is used for development and growth. It is therefore necessary to study how behavior interacts with changes in body shape with regard to resource density and predators. Here, we use the classic predator-induced morphological defense in fish to study the interaction between predator cues, resource availability, and behavioral activity with the aim to determine their relative contribution to changes in body shape. We show that all three variables, the presence of a predator, food level, and activity, both additively and interactively, affected the body shape of perch. In general, the presence of predators, lower swimming activity, and higher food levels induced a deep body shape, with predation and behavior having similar effect and food treatment the smallest effect. The shape changes seemed to be mediated by changes in growth rate as body condition showed a similar effect as shape with regard to food-level and predator treatments. Our results suggests that shape changes in animals to one environmental factor, for example, predation risk, can be context dependent, and depend on food levels or behavioral responses. Theoretical and empirical studies should further explore how this context dependence affects fitness components such as resource gain and mortality and their implications for population dynamics.

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
body shape, environmental conditions, growth, phenotypic plasticity, predator-induced
in
Ecology and Evolution
volume
7
issue
20
pages
11 pages
publisher
Wiley-Blackwell
external identifiers
  • scopus:85031714895
  • wos:000413308700034
ISSN
2045-7758
DOI
10.1002/ece3.3330
language
English
LU publication?
yes
id
47a7869d-4ebf-40cb-bf72-991f0105dfd6
date added to LUP
2017-10-30 14:44:01
date last changed
2018-03-18 05:17:52
@article{47a7869d-4ebf-40cb-bf72-991f0105dfd6,
  abstract     = {<p>The risk of both predation and food level has been shown to affect phenotypic development of organisms. However, these two factors also influence animal behavior that in turn may influence phenotypic development. Hence, it might be difficult to disentangle the behavioral effect from the predator or resource-level effects. This is because the presence of predators and high resource levels usually results in a lower activity, which in turn affects energy expenditure that is used for development and growth. It is therefore necessary to study how behavior interacts with changes in body shape with regard to resource density and predators. Here, we use the classic predator-induced morphological defense in fish to study the interaction between predator cues, resource availability, and behavioral activity with the aim to determine their relative contribution to changes in body shape. We show that all three variables, the presence of a predator, food level, and activity, both additively and interactively, affected the body shape of perch. In general, the presence of predators, lower swimming activity, and higher food levels induced a deep body shape, with predation and behavior having similar effect and food treatment the smallest effect. The shape changes seemed to be mediated by changes in growth rate as body condition showed a similar effect as shape with regard to food-level and predator treatments. Our results suggests that shape changes in animals to one environmental factor, for example, predation risk, can be context dependent, and depend on food levels or behavioral responses. Theoretical and empirical studies should further explore how this context dependence affects fitness components such as resource gain and mortality and their implications for population dynamics.</p>},
  author       = {Svanbäck, Richard and Zha, Yinghua and Brönmark, Christer and Johansson, Frank},
  issn         = {2045-7758},
  keyword      = {body shape,environmental conditions,growth,phenotypic plasticity,predator-induced},
  language     = {eng},
  month        = {10},
  number       = {20},
  pages        = {8567--8577},
  publisher    = {Wiley-Blackwell},
  series       = {Ecology and Evolution},
  title        = {The interaction between predation risk and food ration on behavior and morphology of Eurasian perch},
  url          = {http://dx.doi.org/10.1002/ece3.3330},
  volume       = {7},
  year         = {2017},
}