Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at s = 13 TeV and in p–Pb collisions at sNN = 5.02 TeV

Acharya, S. ; Basu, S. LU orcid ; Christiansen, P. LU ; Hansen, J. LU orcid ; Iversen, K.E. LU orcid ; Matonoha, O. LU ; Nepeivoda, R. LU orcid ; Ohlson, A. LU ; Silvermyr, D. LU orcid and Staa, J. LU , et al. (2024) In Journal of High Energy Physics 2024(3).
Abstract
Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at s = 13 TeV and p–Pb collisions at sNN = 5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle ∆φ and pseudorapidity separation ∆η for pairs of primary charged particles within the pseudorapidity interval |η| < 0.9 and the transverse-momentum interval 1 < pT< 4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6 < |∆η| < 1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results... (More)
Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at s = 13 TeV and p–Pb collisions at sNN = 5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle ∆φ and pseudorapidity separation ∆η for pairs of primary charged particles within the pseudorapidity interval |η| < 0.9 and the transverse-momentum interval 1 < pT< 4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6 < |∆η| < 1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events. © The Author(s) 2024. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; and (Less)
author collaboration
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Collective Flow, Hadron-Hadron Scattering, Jets
in
Journal of High Energy Physics
volume
2024
issue
3
article number
92
publisher
Springer
external identifiers
  • scopus:85195199881
ISSN
1029-8479
DOI
10.1007/JHEP03(2024)092
language
English
LU publication?
yes
id
48395fd9-a710-445b-b846-898bcf94cbad
date added to LUP
2025-12-11 16:16:51
date last changed
2025-12-11 16:17:30
@article{48395fd9-a710-445b-b846-898bcf94cbad,
  abstract     = {{Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at s = 13 TeV and p–Pb collisions at sNN = 5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle ∆φ and pseudorapidity separation ∆η for pairs of primary charged particles within the pseudorapidity interval |η| &lt; 0.9 and the transverse-momentum interval 1 &lt; pT&lt; 4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6 &lt; |∆η| &lt; 1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events. © The Author(s) 2024.}},
  author       = {{Acharya, S. and Basu, S. and Christiansen, P. and Hansen, J. and Iversen, K.E. and Matonoha, O. and Nepeivoda, R. and Ohlson, A. and Silvermyr, D. and Staa, J. and Vislavicius, V. and Zurlo, N.}},
  issn         = {{1029-8479}},
  keywords     = {{Collective Flow; Hadron-Hadron Scattering; Jets}},
  language     = {{eng}},
  number       = {{3}},
  publisher    = {{Springer}},
  series       = {{Journal of High Energy Physics}},
  title        = {{Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at s = 13 TeV and in p–Pb collisions at sNN = 5.02 TeV}},
  url          = {{http://dx.doi.org/10.1007/JHEP03(2024)092}},
  doi          = {{10.1007/JHEP03(2024)092}},
  volume       = {{2024}},
  year         = {{2024}},
}